• Title/Summary/Keyword: polyvinyl-alcohol fiber

Search Result 98, Processing Time 0.023 seconds

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

Quantitative Damage Evaluation of Fiber-Reinforced Cement Composite Using Acoustic Emission Technique (음향방출 기법을 이용한 섬유보강 시멘트 복합체의 정량적 손상평가)

  • Lee, Young-Oh;Yun, Yeo-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.457-464
    • /
    • 2009
  • Fiber is an important ingredient in fiber-reinforced cement composite (FRCC) which can control fracture of cement composite by bridging action. In compliance with the action of the fiber and the aggregate size, it also showed a different failure mechanism. For practical application, it is needed to investigate the fracture behavior of the FRCC and to understand the micro-mechanism of cement matrix with reinforcing fiber. In order to evaluate a characteristics of fracture process in the FRCC, acoustic emission (AE) technique was used for the analysis and evaluation of FRCC damage by acoustic emission under flexural and cyclic compressive loadings. The AE signals were monitored by AMSY4 AE instrument during the entire loading period. The specimens are reinforced with 0, 1.0, 1.5 and 2.0% (by volume) Polyvinyl alcohol (PVA) fiber. The test results showed that the damage progress of the FRCC was characteristic for the fiber replacement ratio. As a result of analyzing the felicity ratio (FR) values, it is shown that this values can be used for evaluating the degree of FRCC damage. On the whole the felicity ratio values of FRCC are shown between 0.4 and 1.1. And, the AE kaiser effect was shown in the all FRCC specimen. In addition, the damage behavior and the microscopic fracture process of the FRCC are evaluated using the AE parameters, such as calm ratio, b-value and felicity ratio. The purpose of this reserch was to advance the state of knowledge regarding the applicability of acoustic emission as an evaluation method for FRCC.

Flexural Performance of Cement Treated Clay-Sand Mixtures Reinforced with Synthetic Fibers (합성섬유로 보강된 시멘트-점토-모래 혼합토의 휨성능 평가에 관한 연구)

  • Jung, Du-Hwoe;Cho, Baik-Soon;Lee, Yong-Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.19-29
    • /
    • 2017
  • The effects of synthetic fibers, cement content, and sand content on the flexural performance of cement-clay-sand mixtures has been evaluated through a flexural performance test with a third-point loading. Beam specimens for the flexural performance test were fabricated with a various amount of cement, sand, and synthetic fibers. Two types of fibers, PVA (Polyvinyl alcohol) and PP (Polypropylene) fibers, were employed in the test. The test results have exhibited that the factors considered in the test have significant effects on the flexural performance of the mixtures in several aspects. The flexural performance of the mixtures has been improved if the mixtures were reinforced with synthetic fibers. The flexural strength and the flexural toughness of the mixtures has been increased as the fiber content was increased. A multiple linear regression analysis has been performed to evaluate the effect of fiber content, cement dosage, and sand content on the flexural performance of the mixtures in terms of flexural strength and flexural toughness. Cement content and sand content were estimated as important factors to have an influence on the first-crack strength and the peak strength whereas the fiber content has the most significant influence on the post-crack behavior. The first-crack strength and the ultimate strength were increased as the cement content and the sand content were increased. As the fiber content was increased, the flexural toughness was increased.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.

Strength and Crack-Damage Control Characteristics of Concrete Beams Layered with Strain-Hardening Cement Composites (SHCCs) (변형 경화형 시멘트 복합체로 단면 대체된 콘크리트 보의 강도 및 균열손상 제어 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Soo;Jang, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • This paper reports on the cracking mitigation and flexural behavior experimentally observed in concrete prisms layered with strain-hardening cement composites (SHCCs) which is micro-mechanically designed cement composite and exhibits pseudo tensile strain-hardening behavior accompanied by multiple cracking while using a moderate amount of fiber, typically less than 2 percent in term of fiber volume fraction. In this study, SHCC is reinforced with 1.3 percent polyvinyl alcohol (PVA) and 0.20 percent polyethylene (PE) in volume fraction. Tests were conducted using $100{\times}100{\times}400mm$ long prisms supported over a simply supported span of 350mm. The four point load was applied using MTS servo control machine. The thickness patched with SHCC is the main variable for this study. Experimental study shows that when subject to monotonic flexural loading, the SHCC layered repair system showed 2.7 - 4.2 times increased load carrying capacity, and mitigated cracking damage of concrete beams layered with SHCC compared with plain concrete beams.

  • PDF

Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation (접촉 폭발 하중을 받는 RC 슬래브의 국부 손상 및 내폭 성능 평가)

  • Li, Ling;Lee, Jin Young;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • In this study, the resistance of various reinforced concrete (RC) slabs subjected to contact detonation was assessed. In order to enhance the blast resistance, fibers and external FRP sheets were reinforced to RC slabs. In the experiment, the $2,000{\times}1,000{\times}100mm$ sized RC slabs were fabricated using normal concrete (NC), steel fiber reinforced concrete (SFRC), polyvinyl alcohol fiber reinforced cementitious composite (PVA FRCC), and ultra-high performance cementitious composites (UHPCC). The damage levels of RC slabs subjected to contact detonation were evaluated by measuring the diameter and depth of crater, spall and breach. The experimental results were compared to the analyzed data using LS-DYNA program and three different prediction equations. The diameter and depth of crater, spall and breach were able to be predicted using LS-DYNA program approximately. The damage process of RC slabs under blast load was also well expressed. Three prediction equations suggested by other researchers had limitations to apply in terms of empirical approaches, therefore it needs further research to set more analytical considerations.

Effect of Curing Conditions on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (양생조건에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yong-Cheol;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.909-912
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. But SHCC has serious problem as drying shrinkage because silica powder is used to make SHCC in order to improve bond strength between reinforcing fibers and cement matrix. Therefore, curing method (period and temperature) is very important for SHCC to show high tensile performance. a variety of experiments have being performed to access the performance of SHCC recently. This research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA), Polyethylene (PE) fibers and steel cord (SC), and how curing method affects the composite property, and ultimately its strain-hardening performance.

  • PDF

Preparation and Characterization of transparent electrode based on polymer/metal oxide composite via electrospinning (전기 방사를 이용한 고분자/금속산화물 복합소재 기반의 투명전극 제조 및 특성 분석)

  • Kang, Hye Ju;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1553-1560
    • /
    • 2021
  • We have confirmed that optimized transmittance and surface resistance by electrospinning time, also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances is showed applicability to next generation flexible displays such as solar cells, displays, and touch screens. → We have confirmed the optimized transmittance and surface resistance by electrospinning time Also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances showed applicability to next generation flexible displays such as solar cells, displays, and touch screens.

Fiber Classification and Detection Technique Proposed for Applying on the PVA-ECC Sectional Image (PVA-ECC단면 이미지의 섬유 분류 및 검출 기법)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.513-522
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC (Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device (CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.