• Title/Summary/Keyword: polyvinyl-alcohol fiber

Search Result 100, Processing Time 0.021 seconds

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Flexural Performance Evaluation of HPFRCC Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.753-756
    • /
    • 2008
  • HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.

  • PDF

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

The relationship between reinforcing index and flexural parameters of new hybrid fiber reinforced slab

  • Cao, Mingli;Xie, Chaopeng;Li, Li;Khan, Mehran
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.481-492
    • /
    • 2018
  • In this paper, a new hybrid fiber system (NHFS) is investigated for the application of slab. The steel fiber, polyvinyl alcohol (PVA) fiber and calcium carbonate ($CaCO_3$) whisker is added to form NHFS. The four-point bending test is carried out on the flexural properties of slab with plain, steel fiber, traditional hybrid fiber system (THFS) and NHFS reinforced cementitious composites. The flexural behavior is evaluated by ASTM C1018-97, JCI-SF4 and post-crack strength (PCS) technique. The evaluation parameters of flexural toughness such as toughness index (TI), equivalent flexural strength (EFS) and PCS are determined. The size of slab specimens is $15mm(thickness){\times}50mm(width){\times}200mm(length)$. The results show that adding $CaCO_3$ whisker to THFS can significantly improve the flexural strength, TI, EFS, PCS of the slab. The empirical relation between reinforcing index ($RI_v$) and flexural parameters show that flexural parameters of slabs increase first and then decrease; which indicates that optimum $RI_v$ values can be helpful in the considering the mix design of steel-PVA fibers-$CaCO_3$ whisker composites for achieving the desired flexural-related properties. The scanning electron microscopy is performed to observe the micro-morphological characteristics of the fracture surface, which proved the positive hybrid effect among the different fibers in cementitious composites. The NHFS can arrest the generation and propagation of the crack from micro to macro level.

Application of Artificial Neural Networks for Prediction of the Strength Properties of CSG Materials

  • Lim, Jeongyeul;Kim, Kiyoung;Moon, Hongduk;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.13-22
    • /
    • 2018
  • The number of researches on the mechanical properties of cemented sand and gravel (CSG) materials and the application of the CSG Dam has been increased. In order to explain the technical scheme of strength prediction model about the artificial neural network, we obtained the sample data by orthogonal test using the PVA (Polyvinyl alcohol) fiber, different amount of cementing materials and age, and established the efficient evaluation and prediction system. Combined with the analysis about the importance of influence factors, the prediction accuracy was above 95%. This provides the scientific theory for the further application of CSG, and will also be the foundation to apply the artificial neural network theory further in water conservancy project for the future.

Effect of Chitosan Addition on the Surface Properties of Kenaf (Hibiscus cannabinus) Paper

  • Ashori Alireza;Raverty Warwick D.;Harun Jalaluddin
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.174-179
    • /
    • 2005
  • The present paper studies the effect of chitosan, cationic starch and polyvinyl alcohol (PVA) as sizing agents to enhance surface properties of kenaf paper. The polymers were incorporated into the sheets by spray application. The results clearly showed that the addition of chitosan to a sheet formed from beaten fibers had excellent improvement in surface properties, compared to the effect of other additives. Sizing quality of cationic starch fairly matched with the sizing quality of chitosan, however, it was able to reduce the water absorption potential of paper more than chitosan at a same concentration. In most other properties, particularly the most important property for printing papers, surface smoothness, chitosan-sized papers are superior to the paper sized with cationic starch or PVA.

Fluorescence Characteristic Analysis for Fiber Detection in Sectional Image of Fiber Reinforced Cementitious Composite (섬유 보강 시멘트계 복합재료의 단면 이미지에서 섬유 검출을 위한 섬유 형광 특성 분석)

  • Lee, Bang-Yeon;Park, Jun-Hyung;Kim, Yun-Yong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • It is important to detect fibers in the sectional image of fiber reinforced cementitious composites (FRCC), since the fiber distribution is a crucial factor to predict or evaluate the mechanical performance of FRCC. In this paper, we investigated the fluorescence characteristics of Polyvinyl Alcohol (PVA) fibers, Polyethylene Terephthalate (PET) fibers, Polyethylene (PE) fibers, and Polypropylene (PP) fibers used in Engineered Cementitious Composites (ECC), which is a special kind of FRCC that incorporates synthetic fibers and exhibits extremely ductile behavior in uniaxial tension, to detect each fiber according to its type. Furthermore, optimum excitation and emission wavelengths were proposed on the basis of maximum difference of Relative Fluorescence Intensity (RFI) between two types of fibers used in the hybrid ECC. Optimum threshold values to discriminate two types of fibers using statistical tools were also proposed. Finally, images of four types of fibers obtained using a fluorescence microscope are compared.

Torsional Behavior of Beams Retrofitted by PVA-ECC (PVA-ECC에 의해 피복 보강된 RC보의 비틀림 거동에 대한 연구)

  • Jeong, Yeong-Seok;Kwon, Min-Ho;Seo, Hyeon-Soo;Kim, Jin-Sup;Kim, Gi-Yeong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.30-37
    • /
    • 2015
  • The need to consider torsion in the design of members of a structure has recently been increasing; therefore, many studies on torsion have been carried out. Recent research was focused on the torsional performance of concrete according to the reinforcing materials used. Of particular interest, are torsion studies of beams made of SFRC(steel fiber reinforced concrete), and there has been increasing use of SFRC at construction sites. In contrast, research on the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) has only covered its mechanical performance, though it exhibits excellent tensile-strain performance (better than SFRC). Therefore, research on the torsion of concrete beams retrofitted using PVA-ECC is lacking. In this study, the behavior characteristics and performance of reinforced-concrete beams retrofitted by PVA-ECC was investigated experimentally. The experimental results show that the resistance to torsional cracking is increased by PVA-ECC. In addition, the strain on the rebar of the specimen was found to be reduced.

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures

  • Kim, J.S.;Lee, H.K.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2021
  • The present study fabricated polyvinyl alcohol (PVA) fiber-reinforced alkali-activated slag/fly ash (AASF) composites with varying mixture ratios of slag and fly ash. The thermomechanical behaviors of the AASF composites exposed to 200, 400, 600, or 800℃ were evaluated by means of compressive strength test, visual observation, and fire resistance tests. X-ray diffractometry, mercury intrusion porosimetry, and thermogravimetry tests were performed to analyze the microstructure change of the AASF composites upon exposure to high temperatures. Specimens exhibited a gradual strength loss up to 600℃, while also showing a significant decrease in the strength above 600℃. The fire resistance test revealed the occurrence of an inflection point as indicated by an increase in the internal temperature at around 200℃. In addition, specimens showed the dehydration of C-S-H gel, the presence of åkermanite, gehlenite, and anorthite upon exposure to 800℃, which is associated with the formation of macropore population with pores having diameters of 1-3 ㎛ and 20-40 ㎛. Visual observation indicated that the PVA fibers mitigated the cracking and/or spalling of the specimens upon exposure to 800℃.