• Title/Summary/Keyword: polyvinyl alcohol Fiber(PVA)

Search Result 84, Processing Time 0.019 seconds

Fiber blending Ratio Effect on Tensile Properties of Hybrid Fiber Reinforced Cement-based Composites under High Strain Rate (고변형속도 조건에서 섬유 혼합비가 하이브리드 섬유보강 시멘트복합체의 인장특성에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.147-148
    • /
    • 2017
  • In this study, the tensile properties of mono and hybrid fiber reinforced cement-based composite according to fiber blending ratio under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s.

  • PDF

Manufacture of Environmentally-friendly Flame-retardant Paper with Polyethylene Terephthalate (PET) Short Cut Fiber (PET 섬유를 사용한 친환경 난연지 제조방법에 대한 연구)

  • Kim, Ji-Seop;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • In this paper, the flame-retardant wall paper was successfully prepared with recycled polyethylene terephthalate (PET) short cut fiber with flame-retardant property and wood pulp using polyvinyl alcohol (PVA) as binder followed by treatment of non-halogen flame retardant. Physical properties such as formation index, tensile strength, elongation, and burst strength increased as defibrillation increased except tear strength. Bulk increased but formation index, tensile strength, elongation and burst strength decreased along with addition of PET short cut fiber. It was also found that tear strength rose significantly up to 30% of PET short cut fiber and then declined (fell) rapidly. As addition level of PVA increased tensile strength, elongation and burst strength increased, but tear strength decreased slightly. Addition of 20% of PET short cut fiber and 13% of PVA provided the flame-retardant wall paper with both improved flameproofing and physical properties.

Engineering Characteristics of Bio-cemented Soil Mixed with PVA Fiber (PVA섬유를 혼합한 미생물 고결토의 공학적 특성)

  • Choi, Sun-Gyu;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.27-33
    • /
    • 2016
  • In this study, Polyvinyl alcohol (PVA) fiber was used to increase strength (unconfined compressive strength and tensile strength) of bio-cemented sand using microorganism. Ottawa sand was mixed with PVA fibers having three fiber contents (0, 0.4, and 0.8%). The fiber mixed sand was treated 14 times by using Microbially Induced Calcite Precipitation (MICP) which included culture (2 times per day) during 7 days to improve its engineering properties. The Bacillus Sporosarcina pasteurrii (Bacillus sp.) was used for urease activity. The specimen was prepared as a cylindrical specimen of 5 cm in diameter and 10 cm in height. Unconfined compressive strength and tensile strength were measured after cementation. Moreover, calcium carbonate content and SEM analyses were performed with a piece of sample. An average value of unconfined compressive strength increased and then slightly decreased but an average value of tensile strength ratio increased with increasing carbonate content the in same condition. Unconfined compressive strength and tensile strength increased about 30% and 160%, respectively. A strength ratio of unconfined compressive strength to tensile strength representing the brittleness decreased from 8 to 4 when fiber content increased from 0.0 to 0.8%. Such bio-cemented sand can be applied into slope area to prevent its shear failure or increase its tensile strength.

A Study on the Fluidity Properties and Strength Properties of Non-sintered Hwangtoh mixed with PVA Fiber (PVA섬유를 혼입한 비소성 황토 콘크리트의 유동특성 및 강도특성에 관한 연구)

  • Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • The purpose of this study is to examine the effect of variations in the mix rate of PVA fiber and the replacement ratio of non-sintering Hwangtoh on non-sintering Hwangtoh mortar and concrete mixed with PVA fiber. For water to binder ratio, mortar and concrete were both 50%, and PVA fiber mix rate was 0% and 0.3%. The replacement ratio of non-sintering Hwangtoh was 0, 25, 50 and 75(%) for mortar, and 0, 15, 30 and 50(%) for concrete. The properties of the mortar and concrete were compared and analyzed in 4 different levels, and the results can be summarized as follows. The replacement ratio of 30% of the non-sintering Hwangtoh, and the PVA fiber mix rate of 0.3% is determined to result in concrete of high quality, including strength and fluidity, and crack control by plastic shrinkage.

Torsional Behavior of Beams Retrofitted by PVA-ECC (PVA-ECC에 의해 피복 보강된 RC보의 비틀림 거동에 대한 연구)

  • Jeong, Yeong-Seok;Kwon, Min-Ho;Seo, Hyeon-Soo;Kim, Jin-Sup;Kim, Gi-Yeong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.30-37
    • /
    • 2015
  • The need to consider torsion in the design of members of a structure has recently been increasing; therefore, many studies on torsion have been carried out. Recent research was focused on the torsional performance of concrete according to the reinforcing materials used. Of particular interest, are torsion studies of beams made of SFRC(steel fiber reinforced concrete), and there has been increasing use of SFRC at construction sites. In contrast, research on the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) has only covered its mechanical performance, though it exhibits excellent tensile-strain performance (better than SFRC). Therefore, research on the torsion of concrete beams retrofitted using PVA-ECC is lacking. In this study, the behavior characteristics and performance of reinforced-concrete beams retrofitted by PVA-ECC was investigated experimentally. The experimental results show that the resistance to torsional cracking is increased by PVA-ECC. In addition, the strain on the rebar of the specimen was found to be reduced.

Spatting Resistance of High Strength RC Column Covering Spray-on Materials of Fiber Composite Spray Mortar(FCSM) (섬유복합모르터의 뿜칠마감에 의한 고강도콘크리트 기둥부재의 폭렬방지)

  • Song Yong-Won;Han Dong-Yeob;Lee Gun-Cheol;Goh Kyoung-Taek;Kim Jin-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.5-8
    • /
    • 2006
  • High strength concrete has been increasingly used in high rue building and it is very obvious re consider fire resistance performance of that. Unlike the normal strength concrete, high strength concrete in sudden elevating temperature at fire is susceptible to spalling with severe explosion and surface split, due to high density of concrete. In order to endure the spalling, inner space temperature of concrete should be control less than certain point. Therefore this study investigated the influence of covering materials on high strength concrete finishing spray-on materials of fiber composite spray mortar(FCSM). Both polypropylene(PP) and polyvinyl alcohol(PVA) fiber were used in this test. Test showed that concrete, covering 18mm mortar containing PVA fiber and confining metal lath 2.3mm thickness, decreased 50% of main bar ambient temperature. compared with control concrete. In addition, concrete covering 18mm mortar without fiber caused falling of covering materials and then it was exposed in elevating temperature. As a result, spatting of the concrete occurred same as control concrete. However, concrete covering spray-on mortar containing PVA or PP fiber resisted spatting occurrence.

  • PDF

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Effect of Fiber Types on Fundamental Properties of Pavement Concrete (섬유 종류가 도로포장용 콘크리트의 기초적 특성에 미치는 영향)

  • Han, Cheon-Goo;Park, Jong-Sup;Jung, Woo-Tai;Jeon, Kyu-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.473-479
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the effect of commercially avaliable fiber types such as polypropylene (PP), nylon (NY), polyvinyl alcohol (PVA) and cellulose (CL) on the engineering properties of concrete for pavement application. The results, showed the fluidity tends to decrease with fibers addition compared to that of plain concrete. As for the effect of fiber types on fluidity loss, use of NY appear to give the most favorable results among all of the fiber types investigated in this study while the effect of the fibers on air content was negligible. For the properties of hardened concrete, compressive and flexural strengths increased with fibers compared to plain concrete. The contribution of NY fibers to strength was the highest followed in the order by NY, PVA, PP, and CL. However, in the case of the splitting tensile strength, its values were increased with NY and PP only. For porosity based on MIP(mercury intrusion penetration) method, the number of around 1 was observed when NY was mixed resulting in increased cumulated amounts of porosity compared with that of plain mix. Thus, based on the consideration of fluidity and strength it was found that the addition of NY fiber showed the optimal results under the conditions applied in this study.

Engineering Property of Basalt Fiber as a Reinforcing Fiber (보강 섬유로서 현무암 섬유의 공학적 특성)

  • Choi, Jeong-Il;Jang, Yu-Hyun;Lee, Jae-Won;Lee, Bang-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • Basalt fiber has many advantages as a reinforcing fiber such as high tensile strength and similar density to concrete. This study investigated the bonding property and the effect of fiber orientation on tensile strength of basalt fiber. Single fiber pullout tests for basalt and polyvinyl alcohol (PVA) fibers were performed to evaluate the bonding property between basalt fiber and mortar. And then tensile strength of basalt, PVA, and polyethylene (PE) fibers according to fiber orientation were measured. From the test results, it was exhibited that the chemical bond, frictional bond, and slip-hardening coefficient of basalt fiber were 1.88, 1.03, 0.24 times of PVA fibers, respectively. And the strength reduction coefficient of basalt fiber was 9 times of PVA fiber and 3 times of PE fiber.

Study on the Durability of GFRP Composites in Alkaline Environment(1) (알칼리 환경에 대한 GFRP 복합재료의 내구성에 관한 연구(1))

  • Moon, Yong-Jae;Park, Chang-Ho;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.58-63
    • /
    • 2008
  • The effect of alkaline environmental condition on durability of GFRP composites according to additives was investigated. Additives used were polyvinyl alcohol(PVA), kaolin and alumina powder. Weight gains increased with immersion time in all GFRP composites at $80^{\circ}C$. But weight gain of specimen added PVA did not differ through the wlwle immersion time in both tap water and alkaline solution at 20 and $80^{\circ}C$. Tensile strength decreased with immersion time in all environment conditions. Tensile strength of GFRP composites regardless of additives decreased rapidly up to 5 days of immersion and then decreased slowly up to 30 days in alkaline solution environment at $80^{\circ}C$. Weight gains had not. much difference in both tap water and alkaline solution at $20^{\circ}C$. And weight gain of GFRP composites added polyvinyl alcohol had smaller than the others through the whole immersion time in both tap water and alkaline solution at $20^{\circ}C$ and $80^{\circ}C$. Tensile strength of GFRP composites added polyvinyl alcohol had higher than the others through the whole immersion time in both tap water and alkaline solution at $20^{\circ}C$ and $80^{\circ}C$.