• Title/Summary/Keyword: polyurethane-acrylate

Search Result 69, Processing Time 0.042 seconds

CD34 Monoclonal Antibody-Immobilization on Polyurethane Surface by Poly(PEGA-co-BMA) Coating (PEGA/BMA 공중합체의 코팅을 통해 CD34 단일클론항체가 고정화된 폴리우레탄 표면)

  • Joung, Yoon-Ki;Hwang, In-Kyu;Park, Ki-Dong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.602-607
    • /
    • 2009
  • A polyurethane (PU) surface enabling in vivo endothelialization via endothelial progenitor cell (EPC) capture was prepared for cardiovascular applications. To introduce CD34 monoclonal antibody (mAb) inducing EPC adhesion onto a surface, poly (poly (ethylene glycol) acrylate-co-butyl methacrylate) and poly (PEGA-co-BMA) were synthesized and then coated on a surface of PU, followed by immobilizing CD34 mAb. $^1H$-NMR analysis demonstrated that poly(PEGA-co-BMA) copolymers with a desired composition were synthesized. Poly(PEGA-co-BMA)-coated PU was much more effective for the immobilization of CD34 mAb, comparing with PEG-grafted PU prepared in our previous study, as demonstrated by that surface density and activity of CD34 mAb increased over 32 times. Physico-chemical properties of modified PU surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy (AFM). The results demonstrated that the poly(PEGA-co-BMA) coating was effective for CD34 mAb immobilization and feasible for applying to cardiovascular biomaterials.

Fabrication of micro/nanoscale hierarchical structures and its application (마이크로/나노 계층구조 형성법 및 응용)

  • Jeong, Hoon-Eui;Kwak, Rho-Kyun;Lee, Seung-Seok;Suh, Kahp-Yang
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.426-428
    • /
    • 2007
  • A simple method is presented for fabricating micro/nanoscale combined hierarchical structures using a two-step UV-assisted capillary molding technique. This lithographic method consists of two steps: (i) fabrication of partially cured polymer microstructures using a PDMS mold and (ii) subsequent nanofabrication using a high-resolution polyurethane acrylate (PUA) mold on top of the pre-formed microstructures. Using this technique, various micro/nano hierarchical structures were fabricated with minimum resolution down to 70 nm over a large area with very good reproducibility.

  • PDF

Hybridization and Functionalization of Aqueous-based Polyurethanes

  • Chen, Kan-Nan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.129-129
    • /
    • 2006
  • Conventional solvent-based polyurethane (PU) is well established for wide applications, such as textile treatments, surface coating, adhesive and so on. Due to the demands of safety, economic, and environmental protection, the solvent-based PU is restricted and has been phasing out and aqueous-based PU is becoming the world market trend, which is an environmental friendly product. The chemical resistance, physical and mechanical properties of aqueous-based PU are still not competible with solvent-based PU. Because of aqueous-based PU is a linear thermoplastic polymer with lower average molecular weight. Their improvements are normally performed by a post-curing reaction or a polymer hybridization to enhance the polymer cross-linking density. Hybridization of PU with aqueous-based epoxy resin or acrylate emulsion and then cured by a curing agent for improving the performance properties and reducing the cost of aqueous-based PU.Furthermore, a special function is added to aqueous-based PU increasing the application value, for examples, flame retardation, polymeric dyes, hydrophilic and etc.

  • PDF

Thermoplastic-nanoimprint lithography 를 위한 유연한 고분자 몰드의 제작

  • Kim, Gang-In;Han, Gang-Su;Lee, Heon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.24.2-24.2
    • /
    • 2010
  • 고분자 몰드를 이용한 nanoimprint lithography (NIL)는 고분자소재의 유연성과 투명성으로 인하여, 유기전자소자나 유연한 디스플레이소자 등 다양한 응용이 가능하다. 하지만, 고분자소재는 일반적으로 열저항성과 내구성이 낮아서, 고분자 몰드를 이용한 패턴형성 시, 자외선 경화방식이 주로 사용된다. 만약 복제가 쉽고, 가격이 저렴하며, 열저항성과 내구성이 강한 고분자 몰드를 제작한다면, thermoplastic-NIL 기술에 적용할 수가 있기 때문에, 고온을 요구하는 소자의 패턴형성 공정에 사용 가능하다. 본 연구에서는 이러한 고분자 몰드 제작을 위하여, 열저항성과 내구성이 강한 polyimide 필름과 polyurethane acrylate (PUA)를 기반으로 제작된 resin을 이용하였다. 먼저 Polyimide 필름 위에 자외선 노광을 사용하여, PUA resin 을 경화시킴으로써 패턴을 형성하였다. 이렇게 만들어진 몰드를 thermoplastic-NIL기술에 적용함으로써, Si 기판 위에 sub-마이크로 급 패턴을 형성하였다. 또한, 제작된 고분자 몰드를 사용하여 반복적인 NIL 공정을 수행함으로써 몰드의 내구성을 확인하였으며, 곡면 기판 위에 NIL을 함으로써 몰드의 유연성을 확인 할 수 있었다.

  • PDF

Fabrication of 6, 13-bis(triisopropylsilylethynyl) (TIPS) pentacene -Nanowire Arrays Using Nano Transfer Molding

  • Oh, Hyun-S.;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.284-284
    • /
    • 2010
  • We report a fabrication of 6, 13-bis(triisopropylsilylethynyl) (TIPS) pentacene nanowires that made on Si substrates by liquid bridge-nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the TIPS-pentacene nanowire and the Si substrate. The patterned TIPS-Pentacene nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.

Fabrication and Assessment of Flexible Nanostructured Film for Antibacterial Properties (항균 특성을 위한 나노구조 유연 필름의 제작 및 평가)

  • Park, Hyun-Ha
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.105-109
    • /
    • 2022
  • In the field of medical and marine industries, antibacterial surfaces have been emerged as one of the most important issues. Recently, many researchers have been studying antibacterial surfaces to kill bacteria or prevent the adhesion of bacteria. In their researches, various materials and structures are suggested to inhibit the adhesion of bacteria or kill the attached bacteria. However, chemical materials such as antibiotics or metal could be toxic. Moreover, frequent use of antibiotics causes super bacteria having resistance to antibiotics. In this study, nano-pillar structured surface was fabricated using polyurethane acrylate (PUA) and the mechanically induced antibacterial function was confirmed based on the fabricated nanostructures. Nanostructures can damage the bacterial membrane of Gram-negative bacteria through stretching of bacterial membrane via interaction with the nanostructures and the bacterial membrane. Consequently, the proposed transparent, flexible and nanostructured PUA films can be one of promising candidates for antifouling and antibacterial surfaces which can be applied in various industries.

Effect of Acrylic Acid on the Physical Properties of UV-cured Coating Films for Metal Coating (금속코팅용 광경화 코팅필름의 물성에 대한 아크릴산(Acrylic acid)의 영향)

  • Seo, Jong-Chul;Choi, Jun-Suk;Jang, Eui-Sung;Seo, Kwang-Won;Han, Hak-Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Five different composition UV-cured poly(urethane acrylate-co-acrylic acid) (PU-co-AA) films have been prepared by reacting isophorone diisocyanate(IPDI), polycaprolactone triol(PCLT), 2-hydroxyethyl acrylate(HEA), and different weight ratio trimethylolpropane triacrylate(TMPTA) and acrylic acid(AA) as diluents, and characterized using a Fourier transform infrared spectroscopy(FT-IR). The adhesion properties onto the stainless steel, morphology, mechanical hardness, and electrical property of UV-cured PU-co-AA films were investigated as a function of acrylic acid(AA) content. All the PU-co-AA films are structure-less and the molecular ordering and packing density decreased with increasing content of AA due to the flexible structure and -COOH side chains in AA. The crosscut test showed that PU-co-AA films without AA and with low content of AA showed 0% adhesion(0B) and the adhesion of PU-co-AA films in the range of 40-50% AA increased dramatically as the content of AA increases. The pull-off measurements showed that the adhesion force of PU-co-AA films to stainless steel substrate varied from 6 to 31 kgf /$cm^2$ and increased linearly with increasing AA content. The mechanical hardness also decreased as the content of AA increases. This may come from relatively linear and flexible structure in AA and low crystallinity in PU-co-AA films with higher content of AA. The higher AA-containing PU-co-AA films showed higher dielectric constant due to the increase of polarization by introducing AA monomer. In conclusion, the physical properties of UV-cured PU-co-AA films are strongly dependent upon the content of AA and the incorporation of AA in polyurethane acrylate is very useful way to increase the adhesion strength of UV-curable polymers on the stainless steel substrate.

Flow Behavior of Thin Polymer Film by various patterns in Spinning Coating Process of Blu-ray Disc Cover layer (블루레이 디스크의 커버레이어 스핀 코팅 시 다양한 패턴에 따른 최적화된 폴리머 거동에 관한 연구)

  • Cho K. C.;Park Y. H.;Kim H. Y.;Kim B. H.;Lee B. G.;Son S. G.;Shin H. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.467-471
    • /
    • 2005
  • In this paper, experimental methods about the flow behavior of thin polymer film by various edge patterns in the spin coating process for stable cover layer coating of a blu-ray disc is described. The blu-ray disc, a next-generation optical disc format over 25GB, consists of a 1.1m thick substrate and a 0.1mm tick cover layer. Generally, cover layer on the blu-ray disc is made by the polymer spin coating process. However, it is hard to secure sufficient coating uniformity around the rim on the cover layer. In order to get the uniform thickness deviation and to minimize the bead around the rim, the edge of the disc substrate can be modified into various patterns, such as normal plain, trench, step and chamfer pattern, etc, around the rim on the disc and experimented with various parameters, such as surface tension, viscosity, coating time, temperature and rotation speed, etc. And the optimal shape of the rim was tried to get by 3 dimensional computer simulation of the polymer expulsion process.

  • PDF

The Flexible Characteristic of Reversible and Robust Nanohair Fastener

  • Park, Seung-Ho;Yoon, Young-Seok;Lee, Dong-Woo;Lee, Dong-Ik;You, Kyoung-Hwan;Pang, Chang-Hyun;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.432-432
    • /
    • 2011
  • Dry adhesion caused by Nanoscale contact comes up to important scientific issue. Herein, we introduce bendable nanohairy locking fastener system with high shear strength and mechanically flexible backing. The polymeric patches like velcro are composed of an array of straight nanohairs with 100 nm diameter and $1{\mu}m$ height. To fabricate high aspect vertical nanohairs, we used UV molding method with appropriately flexible and rigid polyurethane acrylate material on PET substrate. Two identical nanohairy patches are easily merged and locked each other induced by van der Waals force. Because nanohairs can be arrayed with high density ${\sim}4{\times}10^8/cm^2$, we can obtain high shear adhesion force on flat surface (~22 N/$cm^2$). Furthermore, we can obtian nanohairy locking system with maximum shear adhesion ~48 N/$cm^2$ of curved surface due to flexibility of PET substrate. We confirm the tendency that shear adhesion force increases, as radius of curvature increases.

  • PDF