• Title/Summary/Keyword: polysulfone membrane

Search Result 221, Processing Time 0.022 seconds

Improvement of Separation of Polystyrene Particles with PAN Membranes in Hollow Fiber Flow Field-Flow Fractionation

  • Shin, Se-Jong;Chung, Hyun-Joo;Min, Byoung-Ryul;Park, Jin-Won;An, Ik-Sung;Lee, Kang-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1333-1338
    • /
    • 2003
  • Hollow Fiber flow field-flow fractionation (HF-FlFFF) has been tested in polyacrylonitrile (PAN) membrane channel in order to compare it with polysulfone (PSf) membrane channel. It has been experimentally shown that the separation time of 0.05-0.304 ${mu}m$ polystyrene latex (PSL) standards in PAN membrane channel is shorter than that in PSf channel by approximately 65%. The optimized separation condition in PAN membrane is ${\dot V}_{out}/{\dot V}_{rad}=1.4/0.12\;mL/min$, which is equal to the condition in PSf membrane channel. In addition both the resolution ($R_s$) and plate height (H) in PAN membrane channel are better than that in PSf membrane channel. The membrane radius was obtained by back calculation with retention time. It shows that the PSf membrane is expanded by swelling and pressure, but the PAN membrane doesn't expand by swelling and pressure.

Active Transport Characteristics of Anions through a Cell Membrane Model which Irradiated by γ-ray (감마선이 조사된 세포막모델을 통한 음이온의 능동 전달 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.187-195
    • /
    • 2015
  • The active transport characteristics of anions of cell membrane model which irradiated by $^{60}Co\;{\gamma}-ray$ was investigated. The cell membrane model used in this experiment was a sulfonated copolymerized membrane of poly(1-methyl-4-vinylpyridiniumiodide-co-divinylbenzene : MeVP-DVBI). First, the initial flux of $OH^-$ and $Cl^-$, $Na^+$ of membrane which was not irradiated was decreased with increase of thickness of membrane $80-200{\mu}m$, increased with increase of NaOH concentration 0-0.5mol/L and MeVP-DVBI concentration 20-80% was increased with initial flux of $OH^-$ and $Cl^-$, decreased with initial flux of $Na^+$. Second, the initial flux of membrane which was irradiated was less than that. And the driving force of pH of irradiated membrane was significantly increased more than membrane which was not irradiated. The initial flux of the $OH^-$ ion was decreased with increase of $H^+$ ion concentration. As selective transport of $OH^-$ and $Cl^-$ of cell membrane model were abnormal, cell damages were appeared at cell.

In-Situ Cross-linked Polymer Electrolyte Membranes from Thermally Reactive Oligomers for Direct Methanol Fuel Cells

  • Kim, Hae-Kyoung;Lee, Won-Mok;Park, Sam-Dae;Chang, Yoon-Ju;Jung, Jin-Chul;Chang, H.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.271-271
    • /
    • 2006
  • The present article describes a novel method of preparing the sulfonated polysulfone-based PEMs for DMFC, which are excellent in film quality, proton conductivity, methanol impermeability and mechanical properties. No depression in film quality or difficulty in film preparation is observed, even though sulfonated group of the PEMs are kept as high as 70 mol %. Allyl-terminated cooligo-PESs containing the organic sulfonate groups were solvent-cast into films and then thermally treated for cross-linking. Cross-linked sulfonated polysulfone-based PEMs gave unprecedented reduction of methanol cross-over and high ionic conductivity through in-situ thermal polymerization and cross-linking of telechelic sulfonated sulfone oligomers during a membrane preparation.

  • PDF

Preparation and Characterization of Polysulfone Membranes Using PVP as an Additive (폴리비닐피롤리돈 첨가제를 이용한 폴리설폰막의 제조 및 특성 분석)

  • Lee, Jin Young;Lee, Kune Woo;Han, Myeong-Jin;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • Polysulfone (PSf) membranes were prepared via the phase inversion process. Polyvinylpyrrolidone (PVP) was added as a nonsolvent additive in the casting solution containing a mixture of PSf and n-methylpyrrolidone. The added PVP played a role of enhancing liquid-liquid phase separation of the casting solution, and significantly reduced the solution fluidity. When prepared via the diffusion-induced process using water as a precipitation nonsolvent, the solidified membranes revealed a typical asymmetric structure irrespective of the addition of PVP. With 5 wt% PVP content, the finger-like cavities were more developed in the membrane sublayer compared to that of the membranes prepared without PVP. In contrast, with more than 10 wt% of PVP, the formation of finger-like cavities was suppressed, and the thickness of polymer nodule layer was increased. The surface porosity was also increased with the PSf content in the casting solution. The water permeability curve as a function of PVP addition revealed the inflection point. The maximum water permeability for 12 wt% PSf membrane was obtained with 5 wt% PVP content, and that for 18 wt% PSf membrane with 15 wt% PVP.

Simulation for Membrane Reactor using Heteropoly Acid Catalyst (헤테로폴리산 촉매를 이용한 고분자막반응기 모사)

  • 최준선;김용헌;이화영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.53-60
    • /
    • 1997
  • 1. 서론 : 촉매막기술은 반응과 분리공정을 동시에 하나의 장치에서 수행할 수 있기 때문에 한 개의 공정을 줄일 수 있는 효과적인 에너지 절약형 기술이다. 생성물중의 적어도 하나가 선택적으로 막을 통해 투과되기 때문에 가역반응의 경우에는 비가역반응에 가까운 거동을 보이게 된다[1-5]. 본 연구는 12-텅스토인산($H_3PW_{12}O_{40}$)를 촉매로 사용하고 막반응시를 비활성촉매막반응기(IMRCF, Inert membrane reactor with catalyst in the feed side)형태, 막으로는 PSF(Polysulfone), PPO(Polyphenylene Oxide)를 사용하여 MTBE(Methyl tert-butyl ether)분해반응을 모사하였다. 막반응기에서 생성된 생성물을 선택적으로 분리해냄으로 인하여 전환율은 고정층보다 증가하였는데 반응온도가 증가할수록, 반응물의 분압은 낮을수록 증가하였다. 반응온도가 높아짐에 따라 막반응기에서의 전환율은 고정층반응에서 나타나는 전환율과의 차이가 줄어드는 것을 볼 수 있었다. 위와같은 결과에 따라서 MTBE 반응물의 분해로 생성되는Isobutene의 수율이 90$\circ$C 이상의 반응온도에서 촉매/반응물비에 대한 최적조건이 나타나는 것을 알 수 있었다.

  • PDF

Enrichment of Oxygen and process engineering aspects using polysulfone hollowfiber membrane (폴리수폰 중공사막에 의한 산소농축 및 공정변수의 영향)

  • 조정식;김종수;이광래
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.65-66
    • /
    • 1997
  • 1. 서론 : 현재의 막분리 기술로는 단 단계 분리공정(single-stage separation)으로 약 40%의 산소농축공기(oxygen-enriched air)를 얻을 수 밖에 없지만 심냉법(cryogenic techniques)보다는 에너지 소비율이 적으며, 공정이 비교적 간단하기 때문에 용도에 따라 순 산소를 꼭 필요로 하지 않는 제철소, 발전소 등의 연소분야, 호흡기 환자를 위한 의료분야, 생물공학이나 항공기 분야 등에 편리하게 이용될 수 있다. 이와 같이 용도가 다양한 산소를 분리막을 이용하여 보다 편리하고 값싸게 얻기 위해서는 산소와 질소의 막투과에 대한 새로운 지식을 얻고 막투과가 기체의 어떤 성질에 지배되고 있는가를 조사할 필요가 있다. 본 연구에서는 고무상 고분자막(rubbery polymer membrane)에 대한 산소/질소의 수착특성과 순수한 기체의 투과율(permeation rate)을 기초로 하여 혼합기체의 투과율, 분리인자(separation factor), 막분리 공정변수에 의한 중공사 분리막에서의 기체분리특성에 대하여 연구하였다.

  • PDF

Liquid-Liquid Phase Separation in a Quaternary System of PolysuIfone/Polyethersulfone/N-Methyl-2-pyrrolidone/water (사성분계 시스템의 액액상분리에 관한 연구 (폴리술폰/폴리에테르술폰/NMP/물))

  • 백기전;김제영;이환광;김성철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.22-24
    • /
    • 1998
  • 1. INTRODUCTION : The phase inversion method is widely used to prepare a variety of polymeric membranes ranging from micro-filtration to gas separation. The final morphology obtained by immersion precipitation strongly reflects the thermodynamics and kinetics of the system involved. The equilibrium thermodynamics of the ternary system of polymer/solvent/ nonsolvent is still very important to understand and predict membrane structure. Polysulfone (PSf) and polyethersulfone (PES) are important polymers as membrane materials due to the chemical resistance, mechanical strength, thermal stability and transport properies. There are several reports on the experimental phase diagrams in ternary mixtures of PSf/solvent/nonsolvent, and PES/solvent/nonsolvent. It would be interesting to investigate the solution thermodynamics containing these two polymers since PES is slightly less hyclrophobic than PSf.

  • PDF

A Study of the Development of a Radial Pleat Module for Low Pressure Using an Ultrafiltration Membrane

  • Seo, Il-Gun;Shin, Se-Jong;Byoung-Ryul;Song, Hee-Yeol
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • A radial pleat module using a polysulfone membrane was developed. The permeation characteristics of the radial pleat module were compared with those of a flat plate module. The average module efficiency of the radial pleat module for the applied pressure range was 82% and was always greater than that of the spiral wound module. For the radial pleat module, in general, as the applied pressure increases, the flux increases and the rejection reduces. The concentration polarization causes the decrease of the flux for the long time operation. But it has been found that the radial pleat module is more efficient for the reduction of the concentration polarization because it has the more effective area per unit volume and can induce the turbulent flow in the module.

DEVELOPMENT OF MEMBRANE AND COLD-CONDENSATION PROCESS FOR REMOVAL AND RECOVERY OF VOLATILE ORGANIC COMPOUNDS

  • Kim, Sung-Soo;Lee, Jong-Hwa;Kim, Hyunki;Kim, Sang-Yong
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.69-72
    • /
    • 2003
  • Volatile organic compounds (VOC) cause air pollution problem and deterioration of atmosphere of petrochemical and fine chemical plants. Hybrid process of membrane and cold-condensation were developed and it effectively removed and recycled the VOC. Operation parameters of the process were optimized to attain hish removal and recycle of VOC. Composite membranes for organic vapor separation were developed in this work by PDMS coating and plasma polymerization on polypropylene and polysulfone support membranes. PDMS and various silicone monomers were tested for several organic vapors such as benzene, toluene, TCE, and HCFC, which are produced in petrochemical and fine chemical industry and causes air pollution problems if are released to atmosphere. Composite membranes prepared in this work showed appreciable performance in terms of organic vapor removal and reuse. Performance variation of the membranes was correlated with their surface characteristics.

  • PDF

Treatment of dyeing wastewater by membrane process

  • Kim, In-Chul;Ka, Young-Hyun;Joo Young park;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.95-97
    • /
    • 2003
  • The main purpose of this work is to investigate the performance of membranes for treatment of dyeing wastewater. The microfiltration (MF) membranes (titania-blended polysulfone & alumina) were prepared. The nanofiltration (NF) and reverse osmosis (RO) membranes were kindly supplied by the Sae-Han. In order to reuse the wastewater for dyeing, the effluents were treated by the high flux RO and the fouling resistant RO (FRM) membranes. Also, the NF membrane was used for water reuse in rinsing.

  • PDF