• 제목/요약/키워드: polysaccharide-degrading enzymes

검색결과 17건 처리시간 0.018초

세포벽 분해효소의 처리에 따른 감과실의 세포벽 성분의 변화 (Changes in the Components of Cell Wall of Persimmon Fruit by Treatments of Cell Wall-Degrading Enzymes)

  • 김광수;신승렬;송준희;김주남
    • 한국식품영양과학회지
    • /
    • 제24권2호
    • /
    • pp.242-246
    • /
    • 1995
  • This paper was carried out to investigate changes in cell wall, cell wall polysaccharides, pectic substances extracted from cell wall of persimmon fruits treated with polygalacturonase and $\beta$-galactosidase in vitro. Degrading degree of cell wall treated with cell wall-degrading enzymes were higher in order polygalacturonase, polygalacturonase+$\beta$-galactosidase and $\beta$-galactosidase. Contents of soluble pectic substances in cell wall treated with cell wall-degrading enzymes showed as the same order as degrading degree of cell wall, while contents of insoluble pectin lower. Contents of versene-soluble pectin and total pectic substance were not affected by cell wall-degrading enzymes. Contents of uronic acid and hexose in soluble material isolated from cell wall treated with polygalacturonase and mixed enzyme were higher than those of untreatment and $\beta$-galactosidase treatment.

  • PDF

Multicarbohydrase Enzymes for Non-ruminants

  • Masey O'Neill, H.V.;Smith, J.A.;Bedford, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권2호
    • /
    • pp.290-301
    • /
    • 2014
  • The first purpose of this review is to outline some of the background information necessary to understand the mechanisms of action of fibre-degrading enzymes in non-ruminants. Secondly, the well-known and understood mechanisms are described, i) eliminating the nutrient encapsulating effect of the cell wall and ii) ameliorating viscosity problems associated with certain Non Starch Polysaccharides, particularly arabinoxylans and ${\beta}$-glucans. A third, indirect mechanism is then discussed: the activity of such enzymes in producing prebiotic oligosaccharides and promoting beneficial cecal fermentation. The literature contains a wealth of information on various non starch polysaccharide degrading enzyme (NSPase) preparations and this review aims to conclude by discussing this body of work, with reference to the above mechanisms. It is suggested that the way in which multi- versus single-component products are compared is often flawed and that some continuity should be employed in methods and terminology.

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

다양한 다당류를 분해하는 세균 Microbulbifer agarilyticus GP101의 완전한 유전체 서열 (Complete genome sequence of Microbulbifer agarilyticus GP101 possessing genes coding for diverse polysaccharide-degrading enzymes)

  • 정재준;배승섭;정다운;백경화
    • 미생물학회지
    • /
    • 제54권3호
    • /
    • pp.299-301
    • /
    • 2018
  • Microbulbifer agarilyticus GP101은 소라(Turbo cornutus)의 내장에서 분리되었으며 해조류 유래 다당류인 한천, 알긴산, ${\kappa}$-카라기난을 분해하는 특징이 있다. GP101 균주의 유전체는 4,255,625 bp 크기로 3,458개의 코딩 서열을 포함하며 55.4%의 GC 함량을 가진다. BLASTP 분석 결과 7개의 agarase, 5개의 alginate lyase, 10개의 glucanase, 4개의 chitinase, 2개의 xylanases, 1개의 ${\kappa}$-carrageenase, 1개의 laminarinase의 존재를 확인하였다. M. agarilyticus GP101의 유전체 정보는 다당류의 생물전환 공정에 이용할 수 있는 유전 정보를 제공할 수 있을 것이다.

해양 미생물 유래 해조 다당류 분해 효소의 특성 및 산업적 응용 (Properties and Industrial Applications of Seaweed Polysaccharides-degrading Enzymes from the Marine Microorganisms)

  • 김정환;김연희;김성구;김병우;남수완
    • 한국미생물·생명공학회지
    • /
    • 제39권3호
    • /
    • pp.189-199
    • /
    • 2011
  • 최근에 해조류 유래 기능성소재는 항종양성, 항바이러스성, 항혈액응고 및 면역력 증강 등의 다양한 생리활성기능을 갖는 것으로 알려져 있다. 특히 해조다당류를 저분자화하면 다양한 생체조절기능성이 월등히 높게 나타나고 있음이 보고되고 있다. 따라서 해조다당류를 해조류로부터 효과적으로 추출할 수 있는 추출방법의 최적화 및 해조다당류의 저분자화를 통하여 해조다당류 기능성 증진 방법에 대한 연구가 활발히 진행되고 있다. 본 총설에서는 최근 부각되고 있는 해양 미생물 유래 해조다당류 분해효소를 이용한 기능성 신소재 개발 및 산업적 응용에 대하여 논하고자 한다.

알긴산을 분해하는 세균 Tamlana sp. UJ94의 완전한 유전체 서열 (Complete genome sequence of Tamlana sp. UJ94 degrading alginate)

  • 정재준;배승섭;정다운;백경화
    • 미생물학회지
    • /
    • 제54권4호
    • /
    • pp.463-464
    • /
    • 2018
  • Tamlana sp. UJ94는 해수로부터 분리되었으며 알긴산을 분해할 수 있다. 알긴산 분해 관련 특성을 이해하기 위해 이 세균의 유전체를 분석하였다. UJ94의 유전체는 4,116,543 bp의크기로 3,609개의 코딩서열을 가지고 있으며 35.2 mol%의 G + C 함량을 가진다. BLASTp 검색 결과 9개의 alginate lyase 외에도 6개의 agarase, 5개의 amylase, 4개의 carrageenase, 1개의 cellulase, 4개의 pectate lyase, 7개의 xylanase의 존재가 예측되어 UJ94의 다양한 다당류 분해 능력을 암시하였다. Tamlana sp. UJ94의 유전체는 생물전환 공정에 사용할 수 있는 다당류 분해 유전자를 제공할 수 있을 것이다.

Plant Cell Wall Degradation with a Powerful Fusarium graminearum Enzymatic Arsenal

  • Phalip, Vincene;Goubet, Florence;Carapito, Raphael;Jeltsch, Jean-Marc
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권6호
    • /
    • pp.573-581
    • /
    • 2009
  • The complex enzyme pool secreted by the phytopathogenic fungus Fusarium graminearum in response to glucose or hop cell wall material as sole carbon sources was analyzed. The biochemical characterization of the enzymes present in the supernatant of fungal cultures in the glucose medium revealed only 5 different glycosyl hydrolase activities; by contrast, when analyzing cultures in the cell wall medium, 17 different activities were detected. This dramatic increase reflects the adaptation of the fungus by the synthesis of enzymes targeting all layers of the cell wall. When the enzymes secreted in the presence of plant cell wall were used to hydrolyze pretreated crude plant material, high levels of monosaccharides were measured with yields approaching 50% of total sugars released by an acid hydrolysis process. This report is the first biochemical characterization of numerous cellulases, hemicellulases, and pectinases secreted by F. graminearum and demonstrates the usefulness of the described protein cocktail for efficient enzymatic degradation of plant cell wall.

Characterization of Undaria pinnatifida Root Enzymatic Extracts Using Crude Enzyme from Shewanella oneidensis PKA 1008 and Its Anti-Inflammatory Effect

  • Xu, Xiaotong;Jeong, So-Mi;Lee, Ji-Eun;Kang, Woo-Sin;Ryu, Si-Hyeong;Kim, Kwangwook;Byun, Eui-Hong;Cho, Young-Je;Ahn, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.79-84
    • /
    • 2020
  • This study investigated the characterization and functionality of Undaria pinnatifida root (UPT) extracts, degraded using a crude enzyme from Shewanella oneidensis PKA1008. To obtain the optimum degrading conditions, the UPT was mixed with alginate degrading enzymes from S. oneidensis PKA 1008 and was incubated at 30℃ for 0, 3, 6, 12, 24, and 48 h. The alginate degrading ability of these enzymes was then evaluated by measuring the reducing sugar, viscosity, pH and chromaticity. Enzymatic extract at 24 h revealed the highest alginate degrading ability and the lowest pH value. As the incubation time increased, the lightness (L ) also decreased and was measured at its lowest value, 39.84, at 12 hours. The redness and yellowness increased gradually to 10.27 at 6 h and to 63.95 at 3 h, respectively. Moreover, the alginate oligosaccharides exhibited significant anti-inflammatory activity. These results indicate that a crude enzyme from S. oneidensis PKA 1008 can be used to enhance the polysaccharide degradation of UPT and the alginate oligosaccharides may also enhance the anti-inflammatory effect.

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.