• Title/Summary/Keyword: polypropylene MF membrane

Search Result 9, Processing Time 0.019 seconds

Roles of polypropylene beads and pH in hybrid water treatment of carbon fiber membrane and PP beads with water back-flushing

  • Song, Sungwon;Park, Yungsik;Park, Jin Yong
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The roles of polypropylene (PP) beads and pH on membrane fouling and treatment efficiency were investigated in a hybrid advanced water treatment process of tubular carbon fiber membranes (ultrafiltration (UF) or microfiltration (MF)) and PP beads. The synthetic feed including humic acid and kaolin flowed inside the membrane, and the permeated contacted the PP beads fluidized in the space between the membrane and the module with UV irradiation and periodic water back-flushing. In the hybrid process of UF ($0.05{\mu}m$) and PP beads, final resistance of membrane fouling ($R_f$) after 180 min increased as PP beads increased. The turbidity treatment efficiency was the maximum at 30 g/L; however, that of dissolved organic matters (DOM) showed the highest at PP beads 50 g/L. The $R_f$ strengthened as pH of feed increased. It means that the membrane fouling could be inhibited at low alkali condition. The treatment efficiency of turbidity was almost constant independent of pH; however, that of DOM showed the maximum at pH 5. For MF ($0.1{\mu}m$), the final $R_f$ was the minimum at PP beads 40 g/L. The treatment efficiencies of turbidity and DOM were the maximum at PP beads 10 g/L.

Biofilter pretreatment for the control of microfiltration membrane fouling

  • Park, Jae-Hyung;Satoshi Takizawa;Hiroyuki Katayama;Shinichiro Ohgaki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.31-38
    • /
    • 2003
  • A pilot scale biofilter pretreatment-microfiltration system (BF-MF) was operated to investigate the effect of biofilter treatment in fouling reduction of microfiltration. Biofiltration was expected to reduce the membrane fouling by removal of turbidity and metal oxides. The hollow-fiber MF module with a nominal pore size of 0.1$\mu$m and a surface area of 8m$^2$ was submerged in a filtration tank and microfiltration was operated at a constant flux of 0.5 m/d. Biofiltration using polypropylene pellets was performed at a high filtration velocity of 320 m/d. Two experimental setups composed of MF and BF/MF, i.e., without and with biofilter pretreatment, were compared. Throughout the experimental period of 9 months, biofilter pretreatment was effective to reduce the membrane fouling, which was proved by the result of time variations of trans-membrane pressure and backwash conditions. The turbidity removal rate by biofiltration varied between 40% to 80% due to the periodic washing for biofilter contactor and raw water turbidity. In addition to turbidity, metals, especially Mn, Fe and Al were removed effectively with average removal rates of 89.2%, 67.8% and 64.9%, respectively. Further analysis of foulants on the used membranes revealed that turbidity and metal removal by biofiltration was the major effect of biofiltration pretreatment against microfiltration fouling.

  • PDF

Advanced Water Treatment by Hybrid Process of Multi-channel Ceramic MF and Photocatalyst: Effect of Organic Materials (광촉매 및 다채널 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 유기물의 영향)

  • Amarsanaa, Bolor;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid process that was composed of photocatalyst packing in space of between outside of multi-channel ceramic microfiltration membrane and membrane module inside. Photocatalyst was polypropylene (PP) beads coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, standard NOM solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) increased and J decreased as concentration of humic acid changed from 2 mg/L to 10 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiency of turbidity and $UV_{254}$ absorbance were above 96.4% and 78.9%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in (MF), (MF + $TiO_2$), (MF + $TiO_2$ + UV) processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of $UV_{254}$ absorbance by adsorption (MF + $TiO_2$) and photo-oxidation (MF + $TiO_2$ + UV) at humic acid of 4 mg/L and 6 mg/L were above 9.0, 9.5 and 8.1, 10.9%, respectively.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Organic Materials in Water-back-flushing (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척시 유기물의 영향)

  • Park, Jin-Yong;Lee, Gwon-Seop
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2011
  • For advanced drinking water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between outside of tubular ceramic microfiltration membrane and membrane module inside. Photocatalyst was PP (polypropylene) bead coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were above 98.5% and 85.7%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in MF, MF + $TiO_2$, and MF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were above 10.7 and 8.6%, respectively.

A Study on the Preparation and Hydrophilization of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization (방사선 중합에 의한 폴리프로필렌 정밀여과막의 제조 및 친수화 거동에 관한 연구)

  • 황택성;이선아;황의환
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.621-628
    • /
    • 2000
  • Microporous polypropylene (PP) membranes have the high chemical and corrosion resistance, the good mechanical properties and the thermal stability under high temperatures, but its application is restricted within narrow limits due to hydrophobicity of membranes. In order to impart permanent hydrophilicity to the PP microfiltration membrane, the radiation-induced graft of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc) containing hydrophilic functional group onto the membrane has been studied. The effect of graft conditions such as reaction time, total radiation dose, reaction temperatures, acid compositions on graft yield was investigated. Modified PP membranes were shown to cause an increase in the gas flux. Oil emulsion permeation flux of both original PP membrane and modified PP membrane was examined.

  • PDF

Microfiltration of Chlorella sp.: Influence of material and membrane pore size

  • Ahmad, A.L.;Yasin, N.H. Mat;Derek, C.J.C.;Lim, J.K.
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.143-155
    • /
    • 2013
  • Four membranes were used to separate Chlorella sp. from their culture medium in cross-flow microfiltration (MF) experiments: cellulose acetate (CA), cellulose nitrate (CN), polypropylene (PP) and polyvinylidenefluoride (PVDF). It was found that the hydrophilic CA and CN membranes with a pore size of 1.2 ${\mu}m$ exhibited the best performances among all the membranes in terms of permeation flux. The hydrophobicity of each membrane material was determined by measuring the angle between the water (liquid) and membrane (solid). Contact angle measurements showed that deionized (DI) water had almost adsorbed onto the surfaces of the CA and CN membranes, which gave $0.00^{\circ}$ contact angle values. The PP and PVDF membranes were more hydrophobic, giving contact angle values of $95.97^{\circ}$ and $126.63^{\circ}$, respectively. Although the pure water flux increased with increasing pore diameter (0.8 < 1.2 < 3.0 ${\mu}m$) in hydrophilic CA and CN membranes, the best performance in term of filtration rate for filtering a microalgae suspension was attained by membranes with a pore size of 1.2 ${\mu}m$. The fouled membrane pore sizes and pore blocking were inspected using a scanning electron microscope (SEM). MF with large pore diameters was more sensitive to fouling that contributed to intermediate blocking, where the size of the membrane pores is almost equivalent to that of cells.

Comparison study on membrane fouling by various sludge fractions with long solid retention time in membrane bioreactor

  • Sun, Darren Delai;Liu, Shushu
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.175-189
    • /
    • 2013
  • A membrane bioreactor (MBR) with sludge retention time (SRT) of 300 days was maintained for over 2 years. Polypropylene microfiltration (MF) membrane with pore size of 0.2 ${\mu}m$ was used in the MBR system. The fouling behaviors of various sludge fractions from the MBR were studied and sub-divided resistances were analyzed. It was observed that $R_{cp}$ was a dominant resistance during the filtration of activated sludge, contributing 63.0% and 59.6% to the total resistance for MBR and sequential batch reactor (SBR) respectively. On the other hand, $R_c$ played the significant role during the filtration of supernatant and solutes, varying between 54.54% and 67.18%. Compared with $R_{cp}$ and $R_c$, $R_{if}$ was negligible, and $R_m$ values remained constant at $0.20{\times}10^{12}m^{-1}$. Furthermore, resistances of all sludge fractions increased linearly with rising mixed liquor suspended solids (MLSS) concentration and growing trans-membrane pressure (TMP), while the relationship was inversed between fraction resistances and cross flow velocity (CFV). Among all fractions of activated sludge, suspended solid was the main contributor to the total resistance. A compact cake layer was clearly observed according to the field emission scanning electro microscopy (FE-SEM) images.

Hydrophilic Modification of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization and Water Permeability (방사선 조사 그라프트중합에 의한 폴리프로필렌 정밀여과막의 친수화 및 물 투과특성)

  • Park, Jae-Hyung;Lee, Kune-Woo;Hwang, Taek-Sung;Lee, Jae-Won;Oh, Won-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.954-959
    • /
    • 1999
  • Radiation-induced grafting of 2-hydroxyethyl methacrylate(HEMA), acrylic acid(AAc) and methacrylic acid(MAAc) onto polypropylene microfiltration membrane has been studied. The effect of grafting conditions such as solvent composition(MeOH and $H_2O$) and monomer concentration on the grafting yield in investigated. The highest degree of grafting is obtained at a solvent composition of 25% $H_2O$:75% MeOH for HEMA, pure water for AAc and 50% $H_2O$:50% MeOH for MAAc. Modification of the PP membranes with hydrophilic monomers is shown to cause an increase in the water permeation flux of the membranes. It is found that HEMA is the best monomer to increase the water permeation flux and the highest water permeation flux is obtained at 99% degree of grafting. The water permeation flux of AAc-grafted PP membrane and MAAc-grafted PP membrane is very sensitive to environmental pH and $Cu^{2+}$ ion, but the water permeation flux of HEMA-grafted PP membrane scarcely depends on pH and $Cu^{2+}$ ion.

  • PDF

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.