• Title/Summary/Keyword: polyphenylene

Search Result 49, Processing Time 0.022 seconds

The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation (이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계)

  • Lee, Jae S.;Kim, Bo-Young;Lee, Jae-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.

Performances of Plastic Pulley with High Mechanical Properties and Low Friction

  • Kim, Namil;Lee, Jung-Seok;Hwang, Byung-Kook;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Polyphenylene sulfide (PPS) was filled with glass fiber (GF), aramid fiber (AF), and solid lubricants to improve the mechanical properties and wear resistance. The addition of GF effectively enhanced the tensile strength, flexural modulus, and impact strength of PPS, while solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide ($MoS_2$), and tungsten disulfide ($WS_2$) lowered the friction coefficients of the composites to below 0.3. The ball nut and motor pulley of the electric power steering (EPS) were manufactured using the PPS composites, and feasibility was ascertained thereafter by conducting the durability test. The composites filled with GF and AF showed high mechanical strength, but slip occurred at the interface between the pulley and belt while testing above $50^{\circ}C$. When small amounts of lubricants were added, the slip was no longer detected because of the suppression of friction heat. It is realized that the low friction as well as high mechanical properties is important to ensure the reliability of plastic pulleys.

Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells (헤테로폴리산을 포함한 직접 메탄올 연료전지용 나피온/폴리페닐렌옥사이드 복합막의 제조)

  • Kim, Donghyun;Sauk, Junho;Kim, Hwayong;Lee, Kab Soo;Sung, Joon Yong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.187-192
    • /
    • 2006
  • The preparation and characterization of new polymer composite membranes containing polyphenylene oxide (PPO) thin films with hetropoly acid (HPA) are presented. PPO thin films with phosphotungstic acid (PWA) or phosphomolybdic acid (PMA) have been prepared by using the solvent mixture. The PWA and PPO can be blended using the solvent mixture, because PPO and PWA are not soluble in the same solvent. In this study, methanol was used as a solvent dissolving PWA and chloroform was used as a solvent dissolving PPO. PPO-PWA solutions were cast onto a glass plate with uniform thickness. The composite membranes were prepared by casting Nafion mixture on porous PPO-PWA films. The morphology and structure of these PPO-PWA films were observed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The composite membranes were characterized by measuring their ion conductivity and methanol permeability. The performance was evaluated with composite membranes as electrolytes in fuel cell conditions. The methanol cross-over of composite membranes containing PPO-PWA barrier films in the DMFC reduced by 66%.

Sulfonated Dendrimers for the Application of Fuel Cell Membranes 1. Synthesis and Characterization of Sulfonated Dendrimers

  • Kim, Hyoung-Juhn
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2003
  • 1,3,5-Sustitituted polyphenylene type dendrimers were synthesized. The dendrimer was heated in cone. H$_2$SO$_4$ at 120$^{\circ}C$. The reaction mixture was precipitated to ether after simple filtration to get para-sulfonated dendrimer as the chief product. To give mechanical properties to the sulfonated dendrimer, it was partially cross-linked with phenyl ether in the medium of P$_2$O$\sub$5/ and CH$_3$SO$_3$H.

Compatibilization of Linear PPS/PET Blends with SEBS Copolymers (SEBS 공중합체를 이용한 선형 PPS/PET 블렌드의 상용화)

  • Kim, Sungki;Hong, In-Kwon;Lee, Sangmook
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.405-410
    • /
    • 2013
  • The effect of styrene-ethylene/butylene-styrene (SEBS) on the blend of polyphenylene sulfide (PPS) and polyethylene terephthalate (PET) was investigated. The blends were extruded by a single screw extruder equipped with a Maddock mixing screw, and their molded properties were examined. After the binary blends were prepared on the whole compositions of PPS/PET (80/20, 60/40, 40/60, 20/80), the thermal, rheological, mechanical properties and morphology of the blends were analyzed. The results showed the significant decline in the properties of the blends owing to the incompatibility between PPS and PET phases. As a basic blend composition, the PPS/PET (40/60) blend was selected by considering cost efficiency. To this basic blend, SEBS was added as a compatibilizer. With increasing SEBS addition, the mechanical properties were improved. From the domain size reduction observed in morphology, it might be due to the enhancement of compatibility between linear PPS and PET phases by addition of SEBS.

A Study on Properties of the Glass Fiber Reinforced PPS Composites for Automotive Headlight Source Module (자동차 전조등 광원 모듈용 유리섬유강화 PPS 복합재료 특성 연구)

  • Heo, Kwang-Yeol;Park, Sung-Min;Lee, Eun-Soo;Kim, Myung-Soon;Sim, Ji-Hyun;Bae, Jin-Seok
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.293-298
    • /
    • 2016
  • In this paper, Glass Fiber Reinforced Thermoplastic (GFRTP) for automotive headlight source module was fabricated by compounding and injection molding using PPS (Poly Phenylene Sulfide) resin with glass fiber which has three cross section (round type, cocoon type, flat type). Tensile, flexural, impact properties were investigated on effect of cross section, glass fiber contents. And it was observed flatness, dimensional stability, fluidity depending on glass fiber cross section. As a result, flat glass fiber reinforced thermoplastic's mechanical properties were most excellent. Also, dimensional stability and flatness showed better results when using flat glass fiber.

Fabrication and Applications of Polyphenylene Sulfide (PPS) Composites: A Short Review (폴리페닐렌설파이드(PPS) 복합소재 제조 및 응용)

  • Choi, Minsik;Lee, Jungrok;Ryu, Seongwoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.91-100
    • /
    • 2020
  • Polyphenylene sulfide (PPS) is a semi-crystalline engineering thermoplastic resin that has outstanding thermal stability, mechanical strength, inherent flame retardancy, chemical resistance, and electrical properties. Due to these outstanding properties, it is preferred as a matrix for composite materials. Many studies have been conducted to produce composites with carbon fibers and glass fibers to improve mechanical properties and provide functionality of PPS. In this review paper, we report a brief introduction to the fabrication and applications of PPS composites with carbon nanotubes, graphene, carbon fibers, and glass fibers.

Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery (열전폐열회수를 위해 수동적으로 해수냉각되는 폴리머 히트싱크 열성능의 수치적 연구)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.432-436
    • /
    • 2015
  • This study computationally explored the thermal performance of passively-cooled polymer heat sinks utilizing seawater. Polymer heat sinks are proposed as cooling modules of the cold sides of thermoelectric generators for waste heat recovery. 3-D Computational Fluid Dynamics (CFD) modelling was conducted for a detailed numerical study. Polyphenylene sulfide (PPS) and pyrolytic graphite (PG) were selected for the base materials of polymer heat sinks. The computational study evaluated the performance of the PPS and PG heat sinks at various fin numbers and fin thicknesses. Their performances were compared with those of aluminum (Al) and titanium (Ti) heat sinks. The study results showed that the thermal performance of the PG heat sink was 3~4 times better than that of the Ti heat sink. This might be due mainly to the better heat spreading of the PG heat sink than the Ti heat sink. The effect of the number of fins on the performance of the PG heat sink was dissimilar to the cases of the PPS and Ti heat sinks. This result can be explained by the interrelationships among heat spreading, surface area enhancement, and fluidic resistance incorporating with an increase in the number of fins.

Effect of Compatibilizer Types on the Properties of Linear PPS/PET Blends (상용화제의 종류가 선형 PPS/PET 블렌드의 물성에 미치는 영향)

  • Kim, Sungki;Hong, In-Kwon;Lee, Sangmook
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.500-506
    • /
    • 2013
  • The effect of compatibilizer types on the properties of polyphenylene sulfide (PPS)/polyethylene terephthalate (PET) blends was investigated. The blends were extruded by a single screw extruder attached with a Maddock mixing zone and their molded properties were examined. As a basic blend composition, a linear PPS/PET (40/60) blend was selected based on cost efficiency. Three types of compatibilizer, SEBS, modified SEBS, and modified PS were added to the basic blend to improve the properties. The thermal, rheological, mechanical properties and the morphology of the ternary blends were analyzed. The maximum mechanical properties of blends was found at 1 phr of m-SEBS or m-PS content, whose values were almost the same as the theoretical values of miscible blend system. It seemed to by the case that the partial reaction between compatibilizer and the basic blend caused the enhancement of compatibility between linear PPS and PET phases. These ternary blends would be applicable as economic linear PPS alloys.