• 제목/요약/키워드: polyphasic approach

검색결과 24건 처리시간 0.016초

Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp.nov. from Korean Soil

  • Yong Guan;Zhun Li;Yoon-Ho Kang;Mi-Kyung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.753-759
    • /
    • 2023
  • The genus Paenibacillus contains a variety of biologically active compounds that have potential applications in a range of fields, including medicine, agriculture, and livestock, playing an important role in the health and economy of society. Our study focused on the bacterium SS4T (KCTC 43402T = GDMCC 1.3498T), which was characterized using a polyphasic taxonomic approach. This strain was analyzed using antiSMASH, BAGEL4, and PRISM to predict the secondary metabolites. Lassopeptide clusters were found using all three analysis methods, with the possibility of secretion. Additionally, PRISM found three biosynthetic gene clusters (BGC) and predicted the structure of the product. Genome analysis indicated that glucoamylase is present in SS4T. 16S rRNA sequence analysis showed that strain SS4T most closely resembled Paenibacillus marchantiophytorum DSM 29850T (98.22%), Paenibacillus nebraskensis JJ-59T (98.19%), and Paenibacillus aceris KCTC 13870T (98.08%). Analysis of the 16S rRNA gene sequences and Type Strain Genome Server (TYGS) analysis revealed that SS4T belongs to the genus Paenibacillus based on the results of the phylogenetic analysis. As a result of the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) results, SS4T was determined to belong to the genus Paenibacillus. Comparing P. marchantiophytorum DSM 29850T with average nucleotide identity (ANI 78.97%) and digital DNA-DNA hybridization (dDDH 23%) revealed values that were all less than the threshold for bacterial species differentiation. The results of this study suggest that strain SS4T can be classified as a Paenibacillus andongensis species and is a novel member of the genus Paenibacillus.

Acinetobacter pullorum sp. nov., Isolated from Chicken Meat

  • Elnar, Arxel G.;Kim, Min-Gon;Lee, Ju-Eun;Han, Rae-Hee;Yoon, Sung-Hee;Lee, Gi-Yong;Yang, Soo-Jin;Kim, Geun-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.526-532
    • /
    • 2020
  • A bacterial strain, designated B301T and isolated from raw chicken meat obtained from a local market in Korea, was characterized and identified using a polyphasic taxonomic approach. Cells were gram-negative, non-motile, obligate-aerobic coccobacilli that were catalase-positive and oxidase-negative. The optimum growth conditions were 30℃, pH 7.0, and 0% NaCl in tryptic soy broth. Colonies were round, convex, smooth, and cream-colored on tryptic soy agar. Strain B301T has a genome size of 3,102,684 bp, with 2,840 protein-coding genes and 102 RNA genes. The 16S rRNA gene analysis revealed that strain B301T belongs to the genus Acinetobacter and shares highest sequence similarity (97.12%) with A. celticus ANC 4603T and A. sichuanensis WCHAc060041T. The average nucleotide identity and digital DNA-DNA hybridization values for closely related species were below the cutoff values for species delineation (95-96% and 70%, respectively). The DNA G+C content of strain B301T was 37.0%. The major respiratory quinone was Q-9, and the cellular fatty acids were primarily summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:0, and C18:1 ω9c. The major polar lipids were phosphatidylethanolamine, diphosphatidyl-glycerol, phosphatidylglycerol, and phosphatidyl-serine. The antimicrobial resistance profile of strain B301T revealed the absence of antibiotic-resistance genes. Susceptibility to a wide range of antimicrobials, including imipenem, minocycline, ampicillin, and tetracycline, was also observed. The results of the phenotypic, chemotaxonomic, and phylogenetic analyses indicate that strain B301T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter pullorum sp. nov. is proposed. The type strain is B301T (=KACC 21653T = JCM 33942T).

Alternaria mycotoxins and its incidence in fruits and vegetables

  • Patriarca, Andrea
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2018년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2018
  • Alternaria is a ubiquitous fungal genus, widely distributed in the environment and a range of different habitats. It includes both plant pathogenic and saprophytic species, which can affect crops in the field or cause post-harvest spoilage of plant fruits and kernels. Numerous Alternaria species cause damage to agricultural products including cereal grains, fruits and vegetables, and are responsible for severe economic losses worldwide. Most Alternaria species have the ability to produce a variety of secondary metabolites, which may play important roles in plant pathology as well as food quality and safety. Alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) and altenuene (ALT) are considered the main Alternaria compounds thought to pose a risk to human health. However, food-borne Alternaria species are able to produce many additional metabolites, whose toxicity has been tested incompletely or not tested at all. Both alternariols are mutagenic and their presence in cereal grain has been associated with high levels of human esophageal cancer in China. TeA exerts cytotoxic and phytotoxic properties, and is acutely toxic in different animal species, causing hemorrhages in several organs. The possible involvement of TA in the etiology of onyalai, a human hematological disorder occurring in Africa, has been suggested. Altertoxins (ALXs) have been found to be more potent mutagens and acutely toxic to mice than AOH and AME. Other metabolites, such as TEN, are reported to be phytotoxins, and their toxicity on animals has not been demonstrated up to now. Vegetable foods infected by Alternaria rot are obviously not suitable for consumption. Thus, whole fresh fruits are not believed to contribute significantly with Alternaria toxins to human exposure. However, processed vegetable products may introduce considerable amounts of these toxins to the human diet if decayed or moldy fruit is not removed before processing. The taxonomy of the genus is not well defined yet, which makes it difficult to establish an accurate relationship between the contaminant species and their associated mycotoxins. Great efforts have been made to organize taxa into subgeneric taxonomic levels, especially for the small-spored, food associated species, which are closely related and constitute the most relevant food pathogens from this genus. Several crops of agricultural value are susceptible to infection by different Alternaria species and can contribute to the entry of Alternaria mycotoxins in the food chain. The distribution of Alternaria species was studied in different commodities grown in Argentina. These food populations were characterized through a polyphasic approach, with special interest in their secondary metabolite profiles, to understand their full chemical potential. Alternaria species associated with tomato, bell pepper, blueberry, apples and wheat cultivated in Argentina showed a surprisingly high metabolomic and mycotoxigenic potential. The natural occurrence of Alternaria toxins in these foods was also investigated. The results here presented will provide background for discussion on regulations for Alternaria toxins in foods.

  • PDF

국내 과실 탄저병을 일으키는 종 복합체와 종 다양성 및 살균제 감수성 (Colletotrichum Diversity within Different Species Complexes Associated with Fruit Anthracnose in South Korea and Their Fungicides In-Vitro Sensitivity)

  • 장태현;올리울하산;전종엽;김치현;이대민;김주성;강은찬;김재원
    • 식물병연구
    • /
    • 제29권4호
    • /
    • pp.345-362
    • /
    • 2023
  • 탄저병원균(Colletotrichum) 속의 많은 식물병원균은 한국을 비롯하여 전 세계 과수 생산에 큰 위협이 된다. 사과, 감, 자두, 복숭아, 대추, 포도 및 호두와 같은 과실에서 탄저병과 관련된 탄저병원균의 종이 동정되었다. 형태적, 다중 유전자의 계통발생적 및 병원성 시험이 다양한 접근으로 실시되었다. 동정된 탄저병원균의 종에 대한 감수성은 살균제에 대하여 평가하였다. 2종의 종복합체인 gloeosporioides와 acutatum에 속한 9종의 탄저병원균이 국내 과실에 탄저병의 주요 원인균으로 동정되었다. Colletotrichum gloeosporioides 종 복합체 안에는 6종인 C. aenigma, C. fructicola, C. gloeosporioides, C. horii, C. siamense 및 C. viniferum이 있는 반면, Colletotrichum acutatum 종 복합체 안에 종은 C. fioriniae, C. nymphaeae 및 C. orientalis이 동정되었다. 사과 탄저병원균은 C. fructicola, C. siamense, C. fioriniae 및 C. nymphaeae, 자두 탄저병원균은 C. siamense, C. fioriniae 및 C. nymphaeae, 복숭아 탄저병원균은 C. siamense, C. fructicola 및 C. fioriniae, 감 탄저병원균은 C. siamense, C. horii 및 C. nymphaeae, 오미자 탄저병원균은 C. fioriniae, 호두탄저병원균은 C. orientalis, 대추탄저병원균은 C. nymphaeae, 포도 탄저병원균인 C. aenigma, C. fructicola 및 C. siamense를 국내 과수류의 과실에 병을 일으키는 병원균의 종류로 처음 국제학술지에 보고되었다. 이들 병원균의 종에 대한 살균제의 감수성 시험에서 여러 살균제에 대한 탄저병원균의 종 간에 EC50값이 매우 다양하여 감수성의 차이가 크게 나타났다.