• Title/Summary/Keyword: polypeptide

Search Result 746, Processing Time 0.023 seconds

Cloning, Heterologous Expression, and Characterization of Novel Protease-Resistant ${\alpha}$-Galactosidase from New Sphingomonas Strain

  • Zhou, Junpei;Dong, Yanyan;Li, Junjun;Zhang, Rui;Tang, Xianghua;Mu, Yuelin;Xu, Bo;Wu, Qian;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1532-1539
    • /
    • 2012
  • The ${\alpha}$-galactosidase-coding gene agaAJB13 was cloned from Sphingomonas sp. JB13 showing 16S rDNA (1,343 bp) identities of ${\leq}97.2%$ with other identified Sphingomonas strains. agaAJB13 (2,217 bp; 64.9% GC content) encodes a 738-residue polypeptide (AgaAJB13) with a calculated mass of 82.3 kDa. AgaAJB13 showed the highest identity of 61.4% with the putative glycosyl hydrolase family 36 ${\alpha}$-galactosidase from Granulicella mallensis MP5ACTX8 (EFI56085). AgaAJB13 also showed <37% identities with reported protease-resistant or Sphingomonas ${\alpha}$-galactosidases. A sequence analysis revealed different catalytic motifs between reported Sphingomonas ${\alpha}$-galactosidases (KXD and RXXXD) and AgaAJB13 (KWD and SDXXDXXXR). Recombinant AgaAJB13 (rAgaAJB13) was expressed in Escherichia coli BL21 (DE3). The purified rAgaAJB13 was characterized using p-nitrophenyl-${\alpha}$-D-galactopyranoside as the substrate and showed an apparent optimum at pH 5.0 and $60^{\circ}C$ and strong resistance to trypsin and proteinase K digestion. Compared with reported proteaseresistant ${\alpha}$-galactosidases showing thermolability at $50^{\circ}C$ or $60^{\circ}C$ and specific activities of <71 U/mg with or without protease treatments, rAgaAJB13 exhibited a better thermal stability (half-life of >60 min at $60^{\circ}C$) and higher specific activities (225.0-256.5 U/mg). These sequence and enzymatic properties suggest AgaAJB13 is the first identified and characterized Sphingomonas ${\alpha}$-galactosidase, and shows novel protease resistance with a potential value for basic research and industrial applications.

Genetic Organization of an Inducible ${\beta}$-Lactamase Gene Isolated from Chromosomal DNA of Staphylococcus aureus (Staphylococcus aureus에서 분리된 유발성 ${\beta}$-Lactamase 유전자의 유전적 구성)

  • Kim, Young-Sun;Min, Kyung-Il;Byeon, Woo-Hyeon
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 1994
  • An inducible ${\beta}$-lactamase gene (bla) was identified and isolated from the chromosomal DNA of multiple drug resistant strains of Staphylococcus aureus. Determined base sequence of bla and of its flanking region was compared with those of bla genes identified on the staphylococcal plasmids pPC1, pI258, pI1071, and pUB101. Base sequence of 843 base-long structural gene of our bla was same as that of pPCl-, pI258-, and pS1-bla. However, HindIII recognition site Which is found in most of the bla genes at 140 base upstream from the structural gene was moved to the site of 370 base upstream from the structural gene. And one of the two direct repeat sequence found in downstream flanking region of pI1071-bla was deleted in our bla. Amino acid sequence homology analysis of the ORF located around HindIII recognition site reveals that this 80 amino acids-long polypeptide is C-terminus of transposase of Tn4001.

  • PDF

Molecular Characterization of Metallothionein Gene of the Korean Bitterling Acheilognathus signifer (Cyprinidae) (묵납자루 (Acheilognathus signifer; Cyprinidae) metallothionein 유전자의 클로닝 및 특징 분석)

  • Lee, Sang-Yoon;Bang, In-Chul;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.10-20
    • /
    • 2011
  • Genetic determinant for metallothionein (MT), a cysteine-rich protein playing essential roles in metal detoxification and homeostasis, was characterized in the Korean bitterling (Acheilognathus signifer, Cyprinidae), an endemic fish species. The full-length A. signifer MT (AsMT) cDNA (551 bp) is composed of a single open-reading frame (ORF) to encode a polypeptide of 60 amino acids containing 20 cysteine residues whose positions are conserved in most cypriniform MTs. At the genomic level, the AsMT (2,593 bp spanning the 5'-flanking region to the 3'-untranslated region) represented a conserved tripartite (three exons interrupted by two introns) structure with AT-rich introns. The upstream regulatory region (-1,914 bp from the ATG initiation codon) of AsMT displayed various sites and motifs for transcription factors involved in the metal-mediated regulation and stress/immune responses. The AsMT transcript was ubiquitously detected in various organs with variable expression levels, where the ovary and intestine showed the highest expression, while the heart and skeletal muscle represented the lowest level. During an exposure to copper (immersion in $0.5\;{\mu}M$ Cu for 48 h), the levels of AsMT transcripts were significantly elevated in the liver (more than 3.5-fold), moderately in the gill, kidney, and spleen (ranging from 1.5- to 2.5-fold), and barely in the brain and intestine. Results of this study could form a useful basis to explore the metal-related stress physiology of this endangered fish species.

The Influence of PDGF-BB Application Time on the Proliferation of HGF Using Decalcifed Dentin (PDGF-BB 적용시간이 decalcified dentin에서의 치은섬유아세포의 증식에 대한 효과)

  • Park, Jin-Woo;Lee, Jae-Mok;Sun, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.873-887
    • /
    • 1996
  • Platelet-derived growth factor(PDGF) is one of the polypeptide growth fators. PDGF has been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. Recent studies indicated that demineralized root surface as the primary site for growth factor application has advantages over other application method, especially due to binding capacity of growth factor for exposed matrix component of deminera1ized dentin surface. The purpose of this study is to evaluate optimal application time of PDGF-BB on proliferation of human gingival fibroblasts using deminera1ized dentin surface as primary application site. Human gingival fibroblasts and dentin slabs were prepared from the first premolar tooth extracted for the orthodontic treatment, cells were cultured in DMEM/I0% FBS at the $37^{\circ}C$, 5% CO2 incubator. All of the dentin slabs were preconditioned with Tetracycline HCI(100mg/ml) solution and rinsed in PBS. In the cell proliferation experiment, experimental group was immersed in DMEM containing 10% FBS, 50ng/rnl PDGF-BB during different time(30sec, 1, 2, 4, 8 minutes) and dried. Cells at concentration of $1{\times}10^5$cells/ml were seeded in each culture well which contained dentin slabs and incubated for 6 hours. Then, all of the dentin slabs were moved into new 24 well culture dish and incubated for 24, 48, 72 hours. The cell counting was done by hemocytometer with inverted phase contrast microscope after trypsinization. The results were as follows : The application of PDGF-BB for 1, 2 min slightly increased the number of gingival fibroblasts, and the application of PDGF-BB for 4, 8 min prominently increased the number of gingival fibroblasts. The application of PDGF-BB for 4 min showed maximum proliferation rate of gingival fibroblasts at 24, 48, 72 hours, and the application of PDGF-BB for 8 min showed less proliferation rate of gingival fibroblasts compared to the application of PDGF-BB for 4 min at 24, 48, 72 hours. In conclusion, the application of PDGF-BB for 4 min appeared to be optimal to obtain maximum proliferation of gingival fibroblasts using demineralized dentin surface as primary applicaton site of PDGF-BB.

  • PDF

The Effect of EGF on Proliferation Rate of the Human Periodontal Ligament Cells and Human Gingival Fibroblasts (치주인대세포 및 치은섬유아세포의 증식능에 대한 Epidermal growth factor의 영향)

  • Kim, Seon-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.841-858
    • /
    • 1996
  • Epidermal growth factor(EGF) is one of polypeptide growth factors. EGF has been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purposes of this study is to evaluate the effects of EGF on the human periodontal ligament cells and human gingival fibroblast cells that promote regeneration of periodntal tissue. The mitogenic effects of epidermal growth factor on human periodontal ligament cells and human gingival fibroblasts were evaluated by determining the incorporation of 5-Bromo-2'-deoxy-uridine into DNA of the cells in a dose dependent manner. The prepared cells were the primary cultured gingival fibroblast and periodontal ligament cells from humans, the fourth or sixth subpassages were used in the experiments. Cells were seeded in DMEM containing 10% FBS. 1, 10, 50, 100, $200{\eta}g/ml$ and epidermal growth factor were added to the quiescent cells for 24 hours, 48 hours and 72 hours. They were labeled with $10\{mu}l/200{\mu}l$ 5-Bromo-2'-deoxy-uridine for the last 6 hours of each culture. The results of the five determinants were presented as mean and S.D.. The results were as follows : The DNA synthetic activity of human gingival fibroblasts were increased dose dependently by epidermal growth factor at 24 hours, 48 hours and 72 hours. The mitogenic effects were similar at the 24 and 48 hours of epidermal growth factor, but the DNA synthetic activity of human gingival fibroblasts generally decreased at 72 hours. The DNA synthetic activity of human periodontal ligament cells were increased dose dependently by epidermal growth factor at 24 hours but the DNA synthetic activity decreased at $200{\eta}g/ml$ of each hour. Generally the maximum mitogenic effects were observed at the 48 hours application of epidermal growth factor. The DNA synthetic activity of human periodontal ligament cells generally decreased lower at 24, 72 hours than at 48 hours the application of epidermal growth factor. In the comparison of DNA synthetic activity between human gingival fibroblasts and human periodontal ligament cells, human periodontal ligament cells had slightly higher proliferation activity than human gingival fibroblasts for a longer time at the high dosage of the epidermal growth factor. In conclusion, epidermal growth factor have important roles in the stimulation of DNA synthesis in human periodontal ligament cells and human gingival fibroblasts, and thus may be useful for clinical applications in periodontal regenerative procedures.

  • PDF

Analysis of antigenic domain of GST fused major surface protein (p30) fragments of Toxoplasma gondii (융합단백질로 발현된 톡소포자충의 주요막단백질(p30) 절편의 항원성)

  • 남호우;임경심
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.2
    • /
    • pp.135-142
    • /
    • 1996
  • Antigenic domain of jai or surface protein (p30) of Toxoplosmc Sondii was analyzed after polymerase chain reaction (PCR) of its gene fragments. Hydrophilic or hydrophobic moiety of amino acid sequences were expressed as glutathione S-transferase (G57) fusion proteins. Fragments of p30 gene were as follows: 737, total p30 open reading frame (ORF) ; S28, total ORF excluding N-terminal signal sequence and C-terminal hydrophobic sequence; Al9, N-terminal 2/3 parts of A28; A19, N-terminal 2/3 of S28; P9, C-terminal 2/3 part of S28; Z9. middle 1/3 of S28; and 29, C-terminal 1/3 of S28. respectively. Primer of each fragment was synthesized to include clamp sequence of EcoR I restriction site. PCR amplified DNA was inserted info GST (26 kDa) expression vector, PGEX-47-1 to transform into Escheri,hia coei (.JM105 strain). G57 fusion proteins were expressed with IPTG induction as 63. 54, 45, 45, 35, 36. and 35 kDa proteins measured by SDS-PAGE. Each fusion protein was confirmed with G57 detection kit. Western blot analysis with the serum of a toxoplasmosis patient revealed antigenicity in proteins expressed by T37. S28, and Al9 but not those by Pl8. X9, Y10, and Z9. Antigenicity of p30 seems to be located either in N-terminal 115 part in the presence of middle 1/3 part or in the oligopeptides between margins of the first and second 1/3 parts.

  • PDF

Cloning and Expression of an Insecticidal Crystal Protein CryIIA Gene from Bacillus thuringiensis subsp. kurstaki HD-1 (Bacillus thuringiensis subsp. kurstaki HD-1 CryIIA의 내독소 단백질 유전자의 클로닝 및 발현)

  • 김호산;김상현;제연호;유용만;서숙재;강석권;조용섭
    • Korean journal of applied entomology
    • /
    • v.32 no.3
    • /
    • pp.300-306
    • /
    • 1993
  • The CryIIA gene encoding the insecticidal crystal protein of Bacillus thuringiens!s subsp. kurstalri HD-l has been cloned in Escherichia col!, and its nucleotide sequences were determined completely. 5kb Hindlli fragment harboring CryIIA gene was screened in the large ca. 225kb plasmid DNA by southern blot. HindlIT digested 5kb fragment was ligated into pUC19 and transformed in E. coli. The 4kb BamHI-HindlIT fragment containing the CryIIA gene was subcloned and named pSKIIA. DNA sequence analysis demonstrates that pSKIIA is the gene of an operon which is comprised of Lhree open reading frames (designated orn, orf2 and or£3). The CrylIA gene is composed of 3,952bp-long BamHI-Hindill DNA restriction fragment. The orf3 code for a polypeptide of 633 amino acid residues. The protoxin protein has a predicted molecular weight of 70,780. The E. coli derived protoxin gene product is biologICally active against three species of Lepidopteran (Plu.lelia maculipennis, He/iolhis assulta, Spodoptera litura) and a species of Dip Leran( Culex pipines) larvae in bioassay.

  • PDF

Inhibitory Effects of a Recombinant Viral Cystatin Protein on Insect Immune and Development (바이러스 유래 시스타틴 재조합 단백질의 곤충 면역 및 발육 억제효과)

  • Kim, Yeongtae;Eom, Seonghyun;Park, Jiyeong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • Cystatins (CSTs) are reversible and competitive inhibitors of C1A cysteine proteases, corresponding to papain-like cathepsins in plants and animals. A viral CST (CpBV-CST1) was identified from a polydnavirus, Cotesia plutellae bracovirus (CpBV). Our previous study indicated that a transient expression of CpBV-CST1 interfered with immune response and development of Plutella xylostella larvae. To directly demonstrate the protein function, this study produced a recombinant CpBV-CST1 protein (rCpBV-CST1) using bacterial expression system to determine its inhibitory activity against cysteine protease and to assess its physiological alteration in insect immune and development. The open reading frame of CpBV-CST1 encodes a polypeptide of 138 amino acids (${\approx}15kDa$). rCpBV-cystatin protein in BL21 STAR (DE3) competent cells containing a recombinant pGEX4T-3:CpBV-CST1 was over-expressed by 0.5 mM IPTG for 4 h. In biological activity assay, the purified rCpBV-CST1 showed a significant inhibition against papain activity. It inhibited a cellular immune response of hemocyte nodule formation in the beet armyworm, Spodoptera exigua. Moreover, its oral administration retarded larval development of the diamondback moth, Plutella xylostella in a dose-dependent manner. These results suggest that CpBV-CST1 may be applied to control insect pest populations.

Stabilization of Membrane Proteins by Benzyladenine during Wheat Leaf Senescence (노쇠중인 밀잎에서 Benzyladenine에 의한 막단백질의 안정화)

  • 진창덕
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.117-123
    • /
    • 1992
  • The effect of benzyladenine (BA) on lipid peroxidation and compositions of total insoluble proteins and chloroplast thylakoid protein from wheat primary leaves during senescence in the dark was studied. BA ($10^{-5}\;M$) treatment prevented conspicuously the loss of chlorophyll content and soluble and insoluble leaf protein contents in senescing wheat leaf segments during 4-day dark incubation. Under the BA treatment, especially, the level of insoluble protein was highly maintained than that of soluble protein. Also, the increase of malondialdehyde (MDA: the peroxidation product of membrane lipids) content was inhibited in the BA treated leaves. Three major polypeptide bands in quantity corresponding to 57, 26 and 12 KD molecular weight were clearly resolved with other minor bands by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in the insoluble protein fraction. The insoluble protein profiles of the control leaves showed a remarkable decrease in the intensity of the 57 and 12 KD band except for 26 KD band in the 72 h dark incubation. This loss during dark incubation was reduced by BA treatment. More than 20 polypeptides were resolved in the chloroplast thylakoid membrane fraction with the most prominent bands which are 59 and 57 KD ($\alpha\;and\;\beta$ subunit of coupling factor: CF) and 26 KD (apoprotein of LHCP). The changes in thylakoid protein profile during 72 h dark incubation showed the rapid degradation in control, but this degradation was prevented in quantity by BA treatment. The above results suggested that BA would inhibit the peroxidation of membrane lipids, thereby preventing the loss of membrane proteins which led to the maintenance of the membrane integrity including chloroplast thylakoid.

  • PDF

Characterization of peptide:N-glycanase from tomato (Solanum lycopersicum) fruits (토마토 (Solanum lycopersicum) 과육의 숙성정도에 따른 peptide:N-glycanase 발현 분석)

  • Wi, Soo Jin;Park, Ky Young
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.159-167
    • /
    • 2014
  • In eukaryotes, proteins that are secreted into ER are post-translationally modified by N-glycosylation, the patterns of which are significantly different between plant and animal cells. Biotechnology industry has already produced a number of therapeutic glycoproteins in plant cells. However, the aberrant glycosylation of therapeutic recombinant proteins in plant systems can cause immune problems in humans. Therefore, it is important to develop strategies for producing non-glycosylated forms to preserve biological activity and native conformation by a peptide: N-glycanase (PNGase). In this study, we try to isolate PNGase T gene from tomato, which can use as a platform plant for biotechnology industry. We isolated a cDNA (GenBank Accession number KM401550) from tomato leaves with 1,767 bp, which encoded a polypeptide of 588 amino acids with a predicted molecular mass of 65.8 kDa. We also investigated the expression patterns of PNGase T during fruit ripening of tomato. The transcripts of PNGase T, which were constitutively induced in tomato fruit from green stage, were significantly increased and reached a peak at orange stage. After which, those transcripts were continuously reduced. The expression pattern of PNGase T was coincided well with transcripts profiles of metacaspase gene, LeMCA, and senescence-related gene members of ACC synthase, LeACS2, LeACS4, and LeACS6, for ethylene biosynthesis during fruit ripening. These results suggest that PNGase T is involved in a de-glycosylation process associated with senescence and fruit ripening.