• Title/Summary/Keyword: polynomial selection

Search Result 102, Processing Time 0.021 seconds

A Neuro-Fuzzy Approach to Integration and Control of Industrial Processes:Part I

  • Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.58-69
    • /
    • 1998
  • This paper introduces a novel neuro-fuzzy system based on the polynomial fuzzy neural network(PFNN) architecture. The PFNN consists of a set of if-then rules with appropriate membership functions whose parameters are optimized via a hybrid genetic algorithm. A polynomial neural network is employed in the defuzzification scheme to improve output performance and to select appropriate rules. A performance criterion for model selection, based on the Group Method of DAta Handling is defined to overcome the overfitting problem in the modeling procedure. The hybrid genetic optimization method, which combines a genetic algorithm and the Simplex method, is developed to increase performance even if the length of a chromosome is reduced. A novel coding scheme is presented to describe fuzzy systems for a dynamic search rang in th GA. For a performance assessment of the PFNN inference system, three well-known problems are used for comparison with other methods. The results of these comparisons show that the PFNN inference system outperforms the other methods while it exhibits exceptional robustness characteristics.

  • PDF

Observer Design for Enhanced Robustness of Multivariable Predictive control (다변수 예측제어 시스템의 강인성 향상을 위한 관측기 다항식 설계)

  • Kim, Jung-Su;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.497-499
    • /
    • 1999
  • This paper considers enhancing the robustness of a MIMO(Multi-Input Multi-Output) predictive control system. The characteristic polynomial matrix of the closed-loop is shown to consist of two factors $P_c$ and T, where $P_c$ is determined by the tuning knobs of the predictive controller and T is an observer or prefilter polynomial matrix. The robust stability condition is derived in terms of $P_c$ and T. A guideline on the selection of T is then presented for open-loop stable processes.

  • PDF

GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable Nonlinear Process Systems

  • Oh, Sung-Kwun;Park, Ho-Sung;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.309-330
    • /
    • 2009
  • In this paper, we introduce the architecture of Genetic Algorithm(GA) based Feed-forward Polynomial Neural Networks(PNNs) and discuss a comprehensive design methodology. A conventional PNN consists of Polynomial Neurons, or nodes, located in several layers through a network growth process. In order to generate structurally optimized PNNs, a GA-based design procedure for each layer of the PNN leads to the selection of preferred nodes(PNs) with optimal parameters available within the PNN. To evaluate the performance of the GA-based PNN, experiments are done on a model by applying Medical Imaging System(MIS) data to a multi-variable software process. A comparative analysis shows that the proposed GA-based PNN is modeled with higher accuracy and more superb predictive capability than previously presented intelligent models.

A Study on Fuzzy Set-based Polynomial Neural Networks Based on Evolutionary Data Granulation (Evolutionary Data Granulation 기반으로한 퍼지 집합 다항식 뉴럴 네트워크에 관한 연구)

  • 노석범;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.433-436
    • /
    • 2004
  • In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.

  • PDF

Analysis of mixture experimental data with process variables (공정변수를 갖는 혼합물 실험 자료의 분석)

  • Lim, Yong-B.
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • Purpose: Given the mixture components - process variables experimental data, we propose the strategy to find the proper combined model. Methods: Process variables are factors in an experiment that are not mixture components but could affect the blending properties of the mixture ingredients. For example, the effectiveness of an etching solution which is measured as an etch rate is not only a function of the proportions of the three acids that are combined to form the mixture, but also depends on the temperature of the solution and the agitation rate. Efficient designs for the mixture components - process variables experiments depend on the mixture components - process variables model which is called a combined model. We often use the product model between the canonical polynomial model for the mixture and process variables model as a combined model. Results: First we choose the reasonable starting models among the class of admissible product models and practical combined models suggested by Lim(2011) based on the model selection criteria and then, search for candidate models which are subset models of the starting model by the sequential variables selection method or all possible regressions procedure. Conclusion: Good candidate models are screened by the evaluation of model selection criteria and checking the residual plots for the validity of the model assumption. The strategy to find the proper combined model is illustrated with examples in this paper.

Prediction and Classification Using Projection Pursuit Regression with Automatic Order Selection

  • Park, Heon Jin;Choi, Daewoo;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.585-596
    • /
    • 2000
  • We developed a macro for prediction and classification using profection pursuit regression based on Friedman (1984b) and Hwang, et al. (1994). In the macro, the order of the Hermite functions can be selected automatically. In projection pursuit regression, we compare several smoothing methods such as super smoothing, smoothing with the Hermite functions. Also, classification methods applied to German credit data are compared.

  • PDF

Design of $H_{\infty}$ Controller with Different Weighting Functions Using Convex Combination

  • Kim Min-Chan;Park Seung-Kyu;Kwak Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.193-197
    • /
    • 2004
  • In this paper, a combination problem of controllers which are the same type of $H_{\infty}$ controllers designed with different weighting functions. This approach can remove the difficulty in the selection of the weighting functions. As a sub-controller, the Youla type of $H_{\infty}$ controller is used. In the $H_{\infty}$ controller, Youla parameterization is used to minimize $H_{\infty}$ norm of mixed sensitivity function by using polynomial approach. Computer simulation results show the robustness improvement and the performance improvement.

A Study on File Allocation Algorithm in Distributed Computer Systems (분산 컴퓨터 시스템에 있어서의 화일 할당 알고리듬에 관한 연구)

  • Hong, Jin-Pyo;Lim, Chae-Tak
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.118-125
    • /
    • 1990
  • An optimal file allocation algorithm which seeks optimal solution of file allocation problem for efficient management and operation of information files in distributed computer system is proposed. Since file allocation time in practical applications that have many computer sites is tool long, the problem size has to be reduced and computation time is improved by using preassignment conditio. A new method which calculate appriasal value for accurrate value for accurrate representation of assigned state is proposed and the selection criteria to candidate nodes for rapid determination of allocation are given. By using selection criteria, file allocation is determined and final appraisal value represent total cost of assigned state.

  • PDF

Algorithm for Finding the Best Principal Component Regression Models for Quantitative Analysis using NIR Spectra (근적외 스펙트럼을 이용한 정량분석용 최적 주성분회귀모델을 얻기 위한 알고리듬)

  • Cho, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.377-395
    • /
    • 2007
  • Near infrared(NIR) spectral data have been used for the noninvasive analysis of various biological samples. Nonetheless, absorption bands of NIR region are overlapped extensively. It is very difficult to select the proper wavelengths of spectral data, which give the best PCR(principal component regression) models for the analysis of constituents of biological samples. The NIR data were used after polynomial smoothing and differentiation of 1st order, using Savitzky-Golay filters. To find the best PCR models, all-possible combinations of available principal components from the given NIR spectral data were derived by in-house programs written in MATLAB codes. All of the extensively generated PCR models were compared in terms of SEC(standard error of calibration), $R^2$, SEP(standard error of prediction) and SECP(standard error of calibration and prediction) to find the best combination of principal components of the initial PCR models. The initial PCR models were found by SEC or Malinowski's indicator function and a priori selection of spectral points were examined in terms of correlation coefficients between NIR data at each wavelength and corresponding concentrations. For the test of the developed program, aqueous solutions of BSA(bovine serum albumin) and glucose were prepared and analyzed. As a result, the best PCR models were found using a priori selection of spectral points and the final model selection by SEP or SECP.

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.