• Title/Summary/Keyword: polynomial optimization

Search Result 354, Processing Time 0.034 seconds

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • Roh Seok-Beom;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

An Optimization of Polynomial Neural Networks using Genetic Algorithm

  • Kim, Dong-Won;Park, Jang-Hyun;Huh, Sung-Hoe;Yoon, Pil-Sang;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.61.3-61
    • /
    • 2002
  • $\textbullet$ Abstract $\textbullet$ Introduction $\textbullet$ Genetic Algorithm $\textbullet$ Evolutionary structure optimization of PNN $\textbullet$ Simulation result $\textbullet$ Conclusion $\textbullet$ References

  • PDF

Material Optimization of BIW for Minimizing Weight (경량화를 위한 BIW 소재 최적설계)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.16-22
    • /
    • 2013
  • In this study, we propose the method of optimally changing material of BIW for minimizing weight while satisfying vehicle requirements on static stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the linear polynomial regression (PR) model. Using the linear PR model, optimization is carried out an evolutionary algorithm (EA) that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 44.8% while satisfying all the design constraints.

Optimization-Based Determination of Apollo Guidance Law Parameters for Korean Lunar Lander (달착륙 임무를 위한 최적화 기반 아폴로 유도 법칙 파라미터 선정)

  • Jo, Byeong-Un;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.662-670
    • /
    • 2017
  • This paper proposes an optimization-based procedure to determine the parameters of the Apollo guidance law for Korean lunar lander mission. A lunar landing mission is formulated as a trajectory optimization problem to minimize the fuel consumption and the reference trajectory for the lander is obtained by solving the problem in the pre-flight phase. Some parameters of the Apollo guidance, which are coefficients of the polynomial used to define the guidance command, are selected based on the reference trajectory obtained in the pre-flight phase. A case study for the landing guidance of Korean lunar lander mission using the proposed procedure is conducted to demonstrate its effectiveness.

Optimal Weight Design of Rotor-Bearing Systems Considering Whirl Natural Frequency and Stability (선회 고유진동수와 안정성을 고려한 회전자-베어링 시스템의 중량 최적설계)

  • 이동수;손윤호;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.639-646
    • /
    • 1995
  • The objective of this study is to minimize the weight of a damped anisotropic roto-bearing system considering whirl natural frequency and stability. The system is modeled as an assemblage of rigid disks, flexible shafts and discrete bearings. The system design variables are the crosssectional areas of shaft elements and the properties of bearings. To analyze the system, the polynomial method which is derived by rearranging the calculations performed by a transfer matrix method is adopted. For the optimization, the optimization software IDOL (Integrated Design Optimization Library) which is based on the Augmented Lagrange Multiplier (ALM) method is employed. Also, an analytical design sensitivity analysis of the system is used for high accuracy and efficiency. To demonstrate the usefulness of the proposed optimal design program incorporating analysis, design sensitivity analysis, and optimization modules, a damped anisotropic rotor-bearing system is optimized to obtain 34$ weight reduction.

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Sub-Exponential Algorithm for 0/1 Knapsack (0/1 Knapsack에 대한 서브-지수 함수 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.59-64
    • /
    • 2014
  • We investigate $p(n){\cdot}2^{O(\sqrt{n})}$ algorithm for 0/1 knapsack problem where x is the total bit length of a list of sizes of n objects. The algorithm is adaptable of method that achieves a similar complexity for the partition and Subset Sum problem. The method can be applied to other optimization or decision problem based on a list of numerics sizes or weights. 0/1 knapsack problem can be used to solve NP-Complete Problems with pseudo-polynomial time algorithm. We try to apply this technique to bio-informatics problem which has pseudo-polynomial time complexity.

Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks based on Information Granulation and Evolutionary Algorithm

  • Park Ho-Sung;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.297-300
    • /
    • 2005
  • In this study, we proposed genetically optimized self-organizing fuzzy polynomial neural network based on information granulation and evolutionary algorithm (gdSOFPNN), develop a comprehensive design methodology involving mechanisms of genetic optimization. The proposed gdSOFPNN gives rise to a structural Iy and parametrically optimized network through an optimal parameters design available within FPN (viz. the number of input variables, the order of the polynomial, input variables, the number of membership functions, and the apexes of membership function). Here, with the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The performance of the proposed gdSOFPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling.

  • PDF