• 제목/요약/키워드: polymerized complex method

검색결과 35건 처리시간 0.028초

착체중합법에 의한 저전압용 $Y_2$$O_3$: $Eu^{3+}$ 형광체 제조 (Synthesis of $Y_2$$O_3$:$^Eu{3+}$ Phosphor for Low-voltage by Polymerized Complex Method)

  • 류호진;박정규;박희동
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.801-806
    • /
    • 1998
  • $Eu^{3+}$ -doped $Y_2$$O_3$ phosphors has been prepared by a polymerized complex method and investigated their powder and luminescence properties. They were compared with phosphors prepared by a solid state reac-thion method. The phosphors synthesized have been characterized by X-ray diffraction low-voltage lu-minescent emission spectroscopy etc. Under low-voltage electron excitation $Eu^{3+}$-doped $Y_2$$O_3$ exhibited a strong narrow-band red emission peaking at 612nm. On the other hand the critical value for concentration quenching of sample prepared by the polymerized complex method fired at $1400^{\circ}C$ is x=0.05 for $(Y_{1-x}Eu_x__2O_3$ The emission intensity of phosphors prepared by the polymerized complex method was higher than that of phosphors prepared by the solid state reaction method.

  • PDF

침전법과 착체중합법을 이용한 Ga2O3 분말의 합성 및 결정구조 분석 (Synthesis and Crystal Structure Characterization of Ga2O3 Powder by Precipitation and Polymerized Complex Methods)

  • 정종열;김상훈;강은태;한규성;김진호;황광택;조우석
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.156-161
    • /
    • 2014
  • Gallium oxide ($Ga_2O_3$) powders were synthesized using a precipitation method and a polymerized complex method. TG-DSC, SEM, and XRD were performed to investigate the phase and morphology of the $Ga_2O_3$. In situ high-temperature XRD analysis revealed the crystal structure of $Ga_2O_3$ at different temperatures. The $Ga_2O_3$ obtained using the precipitation method and polymerized complex method were generally spherical-shaped particles and their average particle size was approximately 80 nm and $1{\mu}m$, respectively. The crystal structure of the $Ga_2O_3$ prepared by the precipitation method was changed from rhombohedral to monoclinic at $700^{\circ}C$, while monoclinic $Ga_2O_3$ was obtained directly from the precursor by the polymerized complex method.

Polymerized Complex법에 의한 ${\alpha}-Fe_2O_3$ 분말의 제조 (Synthesis of ${\alpha}-Fe_2O_3$ Powders by the Polymerized Complex Method)

  • 강경원;정용선;오근호
    • 한국세라믹학회지
    • /
    • 제35권3호
    • /
    • pp.239-244
    • /
    • 1998
  • 출발원료인 ferric nitrate와 ethylene glycol를 사용하여 iron complex를 제조하였으며 이를 $350^{\circ}C$ 이상의 온도에서 열처리하여 200nm 이하의 미세한 입자 크기를 갖는 ${\alpha}-Fe_2O_3$ 분말을 얻었다. 또한 열분석 X-선 회절 분석 및 적외선 분광 분석을 통하여 제조된 iron complex의 분해 mechanism에 대하여 조사하였고, 출발원료의 조성비 및 반응온도에 따른 입자 크기 및 형상의 변화 양상을 전자현미경 분석과 비표면적 분석을 통하여 조사하였다.

  • PDF

착체중합법을 이용한 SrAl2O4: Eu2+, Dy3+ 축광성 형광체의 합성 (Synthesis and Characteristics of SrAl2O4: Eu2+, Dy3+ Long Afterglow Phosphors by Polymerized Complex Method)

  • 김태호;황해진;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.561-569
    • /
    • 2016
  • $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphorescent phosphors were synthesized using the polymerized complex method. Generally, phosphorescent phosphors synthesized by conventional solid state reaction show a micro-sized particle diameter; thus, this process is restricted to applications such as phosphorescent ink and paint. However, it is possible to synthesize homogeneous multi-component powders with fine particle diameter by wet process such as the polymerized complex method. The characteristics of $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ powders prepared by polymerized complex method with one and two step calcination processes were comparatively analyzed. Temperatures of organic material removal and crystallization were observed through TG-DTA analysis. The crystalline phase and crystallite size of the $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphorescent phosphors were analyzed by XRD. Microstructures and afterglow characteristics of the $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphors were measured by SEM and spectrofluorometry, respectively.

착체중합법으로 합성한 srAl2O4의 핵생성 관찰 (Crystallization of srAl2O4 Synthesized by the Polymerized Complex Method)

  • 김형준;박정현
    • 한국세라믹학회지
    • /
    • 제41권6호
    • /
    • pp.439-443
    • /
    • 2004
  • 착제중합법을 이용하여 SrAl$_2$O$_4$를 합성 시 핵생성 초기단계를 관찰하였다. 고상반응법을 이용했을 때의 문제점인 불균일성과 높은 합성온도를 유지전구체를 이용한 착체중합법으로 해결하였다. 전구체 분해과정은 40$0^{\circ}C$부터 관찰되었으며, 원소분석기와 주사전자현미경으로 관찰하였다. 핵생성 단계를 투과전자현미경으로 관찰하여 30∼50 nm의 결정이 생성되고 있음을 알 수 있었고, XRD 패턴들을 분석하여 그 관찰 결과와 일치함을 확인하였다.

Polymerized complex법에 의한 ZnWO4 nanopower의 제조 (Synthesis of ZnWO4 Nanopowders by Polymerized complex Method)

  • 류정호;임창성;오근호
    • 한국세라믹학회지
    • /
    • 제39권3호
    • /
    • pp.321-326
    • /
    • 2002
  • 착체중합법을 사용하여 nano-size의 ZnWO$_4$ powder를 제조하였다. 금속이온물질로서 znic nitrate와 tungstic acid를 사용하였으며 용매는 ethylene glycol을 사용하였다. 300$^{\circ}$C부터 600$^{\circ}$C의 온도 영역에서 하소한 분말에 대해 열분해 및 결정화 과정, 분말의 형상, 입도 변화 양상을 분석하였다. 일반적인 고상합성시에 필요한 온도보다 현저히 낮은 온도인 400$^{\circ}$C에서 ZnWO$_4$상이 생성되었으며, 600$^{\circ}$C에서 완전한 경정상을 얻을 수 있었다. 합성된 분말은 400$^{\circ}$C와 500$^{\circ}$C에서 원형과 silk-worm 형태가 혼합된 입자 형상을 나타내었고, 600$^{\circ}$C에서보다 균질한 양상을 나타내었다. 합성된 분말의 입자 크기는 400$^{\circ}$C∼600$^{\circ}$C의 온도영역에서 19.9∼24.2nm 정도로 매우 미세하였으며, 하소 온도가 증가함에 따라 분말의 결정상과 입도가 증가하는 것을 확인하였다.

착체중합법과 sol-gel법에 의한 ZnO@TiO2 나노 코아쉘 구조의 제조 (Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method)

  • 임창성
    • 분석과학
    • /
    • 제21권3호
    • /
    • pp.237-243
    • /
    • 2008
  • 착체중합법과 sol-gel법을 이용하여 ZnO 나노입자 표면상에 $TiO_2$ 입자를 코팅한 나노 코아쉘 구조를 제조하였다. 착체중합법으로 제조된 ZnO 입자는 평균입도가 약 100 nm, sol-gel법으로 제조된 $TiO_2$ 입자는 10 nm 이하의 크기로 각각 구성되었다. $ZnO@TiO_2$ 나노 코아쉘 구조의 평균입도는 약 150 nm의 크기를 나타내었다. 착체중합법으로 제조된 구형의 ZnO 나노 입자는 콜로이드상의 $TiO_2$ 입자의 균일한 표면흡착으로 인해 착체중합법으로 제조된 ZnO 입자의 입자간 응집이 크게 제어되었다. ZnO와 $TiO_2$의 이종 입자간의 표면전하는 pH 7 근처의 중성 영역에서 iso-electric point (IEP)의 차이로 인하여 - 로 대전된 $TiO_2$와 + 로 대전된 ZnO 나노입자의 이종의 입자들이 쿨롱의 인력에 의해 서로간의 결합을 하게 되고, 결합을 이룬 $ZnO@TiO_2$ 나노 코아쉘 구조가 표면 전하가 zero가 되어 발생하게 된다.

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

Preparation and Photoluminescence Properties of the ZnGa₂O₄: Mn Phosphor by Polymerized Complex Precursor

  • 조두환;정하균;석상일;박도순
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권6호
    • /
    • pp.608-612
    • /
    • 1997
  • The preparation and photoluminescence properties of $ZnGa_2O_4$ : Mn phosphor are presented. Under 254 nm excitation $Zn_1-_xMn_xGa_2O_4$ exhibits the green emission band at 506 nm wavelength and maximum intensity where x=0.005. The manganese activated $ZnGa_2O_4$ phosphor prepared by the polymerized complex method shows a remarkable increase in the emission intensity and is smaller particle size than that prepared by conventional method. Also, electron paramagnetic resonance study on $ZnGa_2O_4$ : Mn powders indicates that the increase in emission intensity after firing treatment in mild hydrogen reducing atmosphere is due to the conversion of the higher valent manganese to $Mn^{2+}$.