The kinetics of photoinitiated polymerization of dimethacrylate macromonomers have been studied to determine the diffusion-controlled reaction parameters using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). A predicted kinetic rate expression with a diffusion control factor was employed to estimate an effective rate constant and to define the reaction-controlled and diffusion-controlled regimes in the photopolymerization. An effective rate constant, k$_{e}$, can be obtained from the predicted kinetic rate expression. At the earlier stages of polymerization, the average values of kinetic rate constants do not vary during the reaction time. As the reaction conversion, $\alpha$, reaches the critical conversion, $\alpha$$_{c}$, in the predicted kinetic expression, the reaction becomes to be controlled by diffusion due to the restricted mobility of dimethacrylate macromonomers. A drop in value of effective rate constant causes a drastic decrease of reaction rate at the later stages of polymerization. By determining the effective rate constants, the reaction-controlled and diffusion-controlled regimes were properly defined even in the photopolymerization reaction system.m.m.
In this study, the dependency of the behavior of propagating front on the reaction condition in frontal polymerization reaction has been studied. We have used some multifunctional acrylates as a monomer and ammonium persulfate as an initiator for the polymerization reactions. In frontal polymerization, a method of producing polymeric materials via a thermal front that propagates through the unreacted monomer/initiator solution, the behavior of self propagating front shows various dynamic patterns depending on the reaction condition. We have obtained some spin modes of propagating front in the number of 'hot spots' or 'spin heads' by changing the reaction condition. The effect of the reactor tube diameter on the mode of propagating front has also been studied by using some reactor tubes with different size of tube diameter and it has been examined in some detail by adopting an experimental method of two-tubes system.
The risk assessment of thermal behavior and runaway reaction cased by an exothermic batch process in manufacture of the vinyl acetate resin are described in the present paper. The aim of the study was to evaluate the risk of runaway reaction with operating parameters such as a reaction inhibitor, reaction temperature and a mount of methanol charged in the vinyl acetate polymerization process. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool to investigate runaway reaction. From the experimental results, it was found that we could occur the auto acceleration for reaction of raw materials with operating parameters over $65^{\circ}C$ of reaction temperature in the vinyl acetate polymerization process.
4-Allylanisole was polymerized with AlCl3 as a catalyst. The polymerization was carried out in nitroethane at various temperatures with changing the ratio of the initiator to the monomer concentration. The weight averge molecular weights measured by gel permeation chromatography in chloroform with polystyrene standards were between 1,500 and 4,700. 1H NMR spectroscopy showed that the polymerization proceeded through a stepwise aromatic electrophilic substitution reaction along with a minor chain-reaction, resulting in a branched polymer. 4-Chloromethylanisole was also polymerized with AlCl3 in nitroethane through an aromatic electrophilic substitution reaction to give a high molecular weight polymer (Mw=88,000).
Pentamethylcyclopentadienyltitanium trichloride, bis(cyclopentadienyl)titanium dichloride ($Cp_2TiCl_2$), and bis(pentamethylcyclopentadienyl)titanium dichloride were used in the polymerization of styrene without the aid of Group I-III cocatalysts. The properties of the resulting polymer indicated that polymerization was more controlled than in thermal polymerization. The kinetic studies indicated that a lower level of termination is present and that the polymer chain can be extended by adding an additional monomer. To elucidate the mechanism of polymerization, a series of experiments was performed. All results supported the involvement of a radical mechanism in the polymerization using $Cp_2TiCl_2$. The possibility of atom transfer radical polymerization (ATRP) mechanism was investigated by isolating the intermediate species. We could confirm the activation step from the reaction of 1-PEC1 with $Cp_2TiCl$ by detecting the coupling product of the generated active radicals. However, the reversible deactivation reaction competes with other side reactions, and it detection was difficult with our model system.
The runaway reaction was analyzed experimently and theoretically at the batch styrene suspension polymerization process. In the experiments, the reaction temperature with time was measured at various experimental conditions. According to the experimental results, the risk of the runaway reaction was increased with increasing the ratio of the monomer(styrene, M) to the dispersion medium(water, W), the concentration of the initiator(BPO), and the monomer mass, respectively. And simulation results showed that the runaway reaction was significantly affected by the reaction rate constant of the propagation and that the phenomena of the runaway reaction occurred at about 70% conversion. Also, we found that the runaway reaction did not occur under the operating condition of below 0.5 for M/W, approximate 3 wt% BPO, and below 75$^{\circ}C$ for the cooling temperature.
The aim of this study is to assess thermal hazards of polystyrene polymerization process by bulk polymerization with accelerating rate calorimeter(ARC) and Multimax reactor system(MM). From this study, we found out that the polymerization process should be operated at reaction temperature of $120^{\circ}C{\sim}130^{\circ}C$. At reaction temperature over $130^{\circ}C$, there was a runaway reaction hazard due to the temperature control failure following a viscosity increase of reaction products. With a cooling failure of a reactor in the early stage of process operation at the reaction temperature ($120^{\circ}C{\sim}130^{\circ}C$), there was a high thermal hazard of burst of a reactor's rupture disk or explosion of a reactor caused by the rapid rise of temperature and pressure to $340^{\circ}C$, 5.3 bar respectively within 30 - 50 minutes.
Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.
Chain propagation and chain transfer in anionic polymerization of hexafluoropropylene oxide were investigated under various reaction conditions such as the stabilization of reaction temperature, the amount of hexafluoropropylene solvent, and the feeding rate of hexafluoropropylene oxide monomer. Anionic initiator for the polymerization was synthesized from cesium fluoride and hexafluoropropylene oxide in tetraethyleneglycol dimethylether. It was possible to obtain a high molecular weight poly(HFPO) ($M_w$ 14800) using the anionic initiator in conditions of stabilized reaction temperature, and optimized addition of solvent and monomer feeding (HFP/initiator mole ratio=31.5 and HFPO feeding rate=11.67 g/hr). Otherwise, chain transfer reaction in anionic polymerization was increased. From the results of molecular weight in various reaction conditions, it was found that chain propagation and chain transfer in anionic polymerization of HFPO were very sensitive to reaction conditions.
The extent of UV-curing photo-polymerization reaction was monitored by near-IR spectroscopic method. Acrylates containing quaternary ammonium salts and Darocur 1173 were used as reactive monomer and a photo initiator, respectively. The extent of photo-polymerization reaction was obtained from the conversion ratio of acrylate double bond calculated from the intensities of measured bands at 1615 nm and at 2105 nm. Near-IR spectroscopic methods can be an useful tool for the monitoring of the progress of photo-polymerization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.