• Title/Summary/Keyword: polymerization mechanism

Search Result 141, Processing Time 0.03 seconds

Polymerization of Tetrahydrofuran with New Transition Metal Catalyst and Its Mechanism: (p- Methylbenzyl)- o -cyanopyridinium Hexafluoroantimonate

  • 강준원;한양규
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.433-438
    • /
    • 1997
  • (p-Methylbenzyl)-o-cyanopyridinium hexafluoroantimonate, a new catalyst, was synthesized by the reaction of o-cyanopyridine with α-bromo-p-xylene followed by exchange of counteranion with SbF6θ. We examined the effect of the catalyst on the bulk polymerization of tetrahydrofuran under various conditions. The catalytic activity was best in the presence of 1 : 1 of epichlorohydrin used as cocatalyst versus catalyst concentration. The resulting polymers had relatively low conversions in 1.0-40%. Their number average molecular weights were in the range of 800 to 5300. Propagation rate increased with increase in temperature according to an Arrhenius expression giving an activation energy of 62 KJ/mol. We also found catalyst proceeds via a cationic mechanism.

Theoretical Study on Polymerization of Oxepane High Explosives

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Oxepane high explosives substituted to explosive group such as azido, nitrato and hydrazino are investigated theoretically the acid catalyzed reaction using the semiempirical MINDO/3, MNDO and AM1 methods to use as the guidelines of high explosives. The nucleophilicity and basicity of oxepane high explosives can be explained by the value of negative charge on oxygen atom of oxepane and the reactivity in propagation step can be represented by the value of positive charge on carbon atom and low electrophile LUMO energy. It was known that carbenium ion was favorable due to the stable energy (19.507~32.101 Kcal/mol) between oxonium ion and carbenium ion in the process of cyclic oxonium ion of oxepane high explosives being converted to open carbenium ion in oxepane high explosives. The value of concentration of cyclic oxonium ion and open carbenium ion in equilibrium status was found to be a major determinant of mechanism, it was expected to react faster in the prepolymer propagation step in SN1 mechanism than in that of $S_N2$.

Theoretical Studies on the Cationic Polymerization Mechanism of Cyclic Acetals (산 촉매하의 Cyclic Acetals 공중합반응에 관한 분자궤도론적 연구)

  • Young-Gu Cheun;Jae-Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 1992
  • The cationic polymerization of cyclic acetals are investigated theoretically using the semiempirical MINDO/3, MNDO, and $AM_1$, methods. The nucleophilicity and basicity of cyclic acetals can be explained by the negative charge on oxygen atom of cyclic acetals. The reactivity of propagation in the polymerization of cyclic acetals can be represented by the positive charge on $C_2$ atom and the low LUMO energy of active species of cyclic acetals. The reactivity of 2-buthyl-1,3-dioxepane(2-Bu-DOP) of cyclic oxonium and opening carbenium ion form is expected computational stability of the oxonium ion by 5${\sim}$7kcal/mole favoring the carbenium ion. Owing to the rapid equilibrium of these cation forms and the reaction coordinate based on calculation that the reaction coordinate based on calculation that the chain growth $S_N1$ mechanism will be at least as fast as that for $S_N2$ mechanism.

  • PDF

A Study Based on Molecular Orbital Theory of Polymerization of Oxetane High Explosives (옥세탄 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.159-164
    • /
    • 2009
  • Monomers of oxetane high explosives were theoretically examined in terms of reactivity, reaction mechanism and process of polymerization substituted by azido $(-CH_2N_3)$, nitrato $(-CH_2ONO_2)$ and hydrazino $(-CH_2N_2H_3)$ which belong to the 5th class hazardous materials and have explosiveness under acid catalyst using MINDO/3, MNDO, and AMI methods for formal charge, heat of formation, and energy level. Nucleophilicity and base of oxetane high explosives could be explained by negative charge size of oxetane oxygen atom and reactivity of oxetane in the growth stage of polymerization under acid catalyzer could be expected to be governed by positive charge size of axial carbon atom and low LUMO energy of electrophile. It could be estimated that carbenium ion was more beneficial in the conversion process of oxetane high explosives than that of stabilization energy (13.90~31.02 kcal/mole) of oxonium ion. In addition, concentration of oxonium ion and carbenium ion in equilibrium state influenced mechanism and it was also estimated that $S_N1$ mechanism reacts faster than that of $S_N2$ in prepolymer growth stage considering quick equilibrium based on form and calculation of polymerization under acid catalyzer.

The electrical conduction characteristics of polymide thin films fabricated by vapor deposition polymerization(VDP) method based on PMDA and 4,4'-DDE monomer (진공증착중합법을 이용하여 PMDA와 4,4'-DDE 단량체로 제조한 polyimide박막의 전기전도 특성)

  • 김형권;이덕출
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.776-782
    • /
    • 1996
  • The electrical properties of vapor deposition polymerized polymide thin films for getting an in-line system with manufacturing process of semiconductor device, have been studied. Polyimide thin films fabricated by vapor deposition polymerization(VDP) method based on PMDA and 4,4'-DDE monomer were confirmed by FT-IR spectra. It is found that the major conduction carriers of thin films are ions, and the hopping length of ions is almost same with monomer length at the temperature over 120.deg. C through the analysis of electrical conduction mechanism. Also, The activation energy is about 0.69 eV at the temperature of >$30^{\circ}C$ - >$150^{\circ}C$ and it is shown that the resistivity at which thin films can be used as an insulating film between layers of semiconductor device, is 3.2*10$^{15}$ .ohm.cm.

  • PDF

Preparation of Nylon 6/ Clay Nanocomposites by Reactive Extrusion

  • Soonho Lim;Park, Jung-Hoon;Kim, Woo-Nyeon;Lee, Sang-Soo;Kim, Junkyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.16-20
    • /
    • 2003
  • As the preliminary works for the preparation of exfoliated nanocomposites by reactive extrusion (REX) the modified anionic polymerization proceeded in a flask using an $\varepsilon$-caprolactam, catalyst, initiator, and clay. Polymerization methods were classified with a variation of the clay adding time. Intercalations mechanism of clay layers was investigated by measuring the WAXD peaks of clay with polymerization. In the preparation of nanocomposites, the molecular weight of nylon 6 was affected by the clay content. From the mechanical property measurement, improved properties were obtained in comparison to the neat nylon 6, and these properties were also affected by the molecular weight.

  • PDF

Controllable Movement of the Azobenzene Linked Crown Ether Conjugated Liposome

  • Seo, Eun-Seok;Kim, Soo-Hyun;Kim, Jin-Seok;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1158-1162
    • /
    • 2005
  • Drug delivery systems have been developed to reduce the side toxicity of drugs by localizing them in the site of action. But it depends on the circulation of the blood and it doesn't have the function of locomotive mechanism of itself for searching for the region of disease. However, this problem could be solved by nanobot which have the locomotive function. So, we mimic the movement of cell that can move in a human body. In this paper, to polymerize the encapsulated actin within the liposome, electroporation technique is employed. In order to optimize polymerization and depolymerization of the liposome, we compare the time of polymerization and depolymerization by concentration of crown ether. we synthesis the liposome which contain azobenzene Linked crown Ether conjugated Actin protein. Azobenze linked crown ether holds the K+ ion by exposure of UV light and this disturbs the actin polymerization. In result, UV light could control the liposome growth. Finally, we could develop the liposome robot and control the growth and degeneration of the liposome by external stimuli such s UV light. The merit of the controlling by UV light doesn't need to inject proteins which induce polymerization and depolymerization of actin protein.

  • PDF

MICROHARDNESS OF ESTHETIC RESTORATIVE MATERIALS CURED BY 3 TYPES OF NARROW-BANDED WAVELENGTH (중합가시광 파장대에 따른 심미성 수복재의 미세경도 변화)

  • 김현철;조경모;신동훈
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 2001
  • There are several factors affecting the effectiveness of polymerization of the esthetic restorative materials. Among those factors, the initiator. camphoroquinone has the unique characteristic. of which the light sensitivity is very dependent on the wavelength of blue light. Camphoroquinone shows the most light absorption ability in the wavelength range of 470nm. So most of clinically used light curing systems adopt this phenomenon as their polymerization mechanism. The most popular way of light curing system is standard 40 second curing. But the problem of standard curing technique shows the rapid increase of resin viscosity followed by the acceleration of polymerization and the limited resin flow, resulted in reduction of the physicalproperty of restoration by retained stress. The object of this study was to verify the effects of narrow-banded wavelength on the microhardness of the esthetic restorative materials. a composite resin and a compomer, using filters which have peak wave length of 430nm, 450nm, 470nm, respectively. The results were as follows: 1. All the experimental groups showed lower hardness value than the control group. 2. In DyractAP, the hardness value by wavelength showed the same changing pattern on both upper and lower surfaces. 3. In DenFil, the hardness value by wavelength showed different changing pattern on upper and lower surfaces. 4. The hardness ratio showed similar pattern to the hardness variation of lower surface. but there was no significant difference between measurement in 10 minutes and 3 days later, besides the increase of hardness value.

  • PDF

Steric and Electronic Effects of Tetradentate Nickel(II) and Palladium(II) Complexes toward the Vinyl Polymerization of Norbornene

  • Lee, Dong-Hwan;Lee, Jung-Hwan;Eom, Geun-Hee;Koo, Hyo-Geun;Kim, Cheal;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1884-1890
    • /
    • 2011
  • A series of Ni(II) and Pd(II) complexes bearing N4-type tetradentate ligands, [Ni($X^1X^2$-6-$Me_2bpb$) 1] and [Pd($X^1X^2$-6-$Me_2bpb$) 2]; 6-$Me_2bpb$ = N,N'-(o-phenylene)bis(6-methylpyridine-2-carboxamidate), $X^1$ = Cl, H, or $CH_3$, $X^2$ = $NO_2$, Cl, F, H, $CH_3$, or $OCH_3$) were designed, synthesized, and characterized to investigate electronic and steric effects of ligand on the norbornene polymerization catalysts. Using modified methylaluminoxanes as an activator, the complexes exhibited high catalytic activities for the polymerization of norbornene and the nickel complexes exhibited better catalytic activity the palladium complexes. Ni complex 1a with $NO_2$ group on the benzene ring showed the highest catalytic activity of $4.9{\times}10^6$ g of PNBEs/$mol_{Ni}{\cdot}h$ and molecular weight of $15.28{\times}10^5$ g/mol with PDI < 2.30. Complexes with electron-withdrawing groups are more thermally stable (> 100 $^{\circ}C$), and tend to afford higher polymerization productivities than the ones having electron-donating groups. Amorphous polynorbornenes were obtained with good solubility in halogenated aromatic solvents. A vinyl addition mechanism has been proposed for the catalytic polymerization.