• Title/Summary/Keyword: polymerization ability

Search Result 64, Processing Time 0.021 seconds

Evaluation of polymerization ability of resin-based materials used for teeth splinting (레진계 치아 스플린팅 재료들의 중합능력 평가)

  • Lee, Jeong-Gil;Kim, Soo-Yeon;Lee, Jae-Kwan;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.290-296
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the polymerization ability of resin-based materials used for teeth splinting according to the thickness of cure. Materials and Methods: For this study, the Light-Fix and G-FIX developed for resinous splinting materials and the G-aenial Universal Flo, the high-flowable composite resin available as restorative and splinting material, were used. Ten specimens of the thickness of 2, 3, 4 and 5 mm and 5 mm in diameter for each composite resin (total 120) were prepared. The microhardness of top and bottom surfaces for each specimen was measured by the Vickers hardness testing machine. The polymerization ability of the composite resin for each thickness was statistically analyzed using independent T-test at a 0.05 level of significance. Results: There was no difference of polymerization ability regardless of the thickness in the Light-Fix and G-FIX. The G-aenial Universal Flo showed significantly low polymerization ability from the thickness of the 3 mm (P < 0.05). Conclusion: The Light-Fix and G-FIX, which are resin-based materials used for teeth splinting, are expected to be suitable for light curing up to 5 mm in thickness.

High Performance Phenoxytitanium-Based Catalysts for Olefin Polymerization

  • Miyatake, Tatsuya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.159-160
    • /
    • 2006
  • We developed novel catalyst, PHENICS composed of the combination of a cyclopentadienyl group to perform a high catalytic activity and a bulky phenoxy group, which performs the production of high molecular weight polyolefin. The polymerization activity of PHENICS at high temperature is higher than well-known CGC catalyst. PHENICS showed the excellent ability of comonomer incorporation into polymer chain. The obtained copolymer had a high molecular weight. The PHENICS catalyst is also active to the copolymerization of ethylene and several vinyl comonomers such as styrene, norbornen, and conjugated dienes. We will discuss new cocatalysts for PHENICS to improve activity and the ability of molecular weight control.

  • PDF

기능성 레진을 이용한 구조화된 나노 입자의 특성

  • 신진섭;박영준;김중현
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.53-53
    • /
    • 2002
  • Alkali-soluble random copolymer (ASR) was used as a functional resin in the emulsion polymerization of styrene to prepare structured nanoparticles. The calorimetric technique was applied to study the kinetics of emulsion polymerization of styrene using ASR and conventional ionic emulsifier, sodium dodecyl benzene sulfonate (SDBS). ASR could form aggregates like micelles and the solubilization ability of the aggregates was dependent on the neutralization degree of ASR. The rate of polymerization in ASR system was lower than that in SDBS system. This result can be explained by the creation of a hairy ASR layer around the particle surface, which decreases the diffusion rate of free radicals through this region. Although a decrease in particle size was observed, the rate of polymerization decreased with increasing ASR concentration. The higher the concentration of ASR is, the thicker and denser ASR layer may be, and the more difficult it would therefore be for radicals to reach the particle through this layer of ASR. The rate of polymerization decreased with increasing the neutralization degree of ASR. The aggregates with high neutralization of ASR are less efficient in solubilizing the monomer and capturing initiator radicals than that of the lower neutralization degree, which leads to decrease in rate of polymerization.

  • PDF

A NEW METHOD - REAL TIME MEASUREMENT OF THE INITIAL DYNAMIC VOLUMETRIC SHRINKAGE OF COMPOSITE RESINS DURING POLYMERIZATION (복합레진의 초기 동적 체적 중합수축의 실시간 측정 -새로운 측정장치의 개발에 대한 소고-)

  • 이인복
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2001
  • The polymerization shrinkage of composite resins is an important drawback although the composites have many advantages-more esthetic and conservative than metallic restoratives etc. The purposes of this research were to develop a new measurement method and to manufacture an instrument that can measure the initial dynamic volumetric shrinkage of composite resins during polymerization. The instrument was basically an electromagnetic balance that constructed with a force transducer using position sensitive photo detector(PSPD) and a negative feedback servo amplifier of proportional-derivative(PD) controller. The volumetric change of composites during polymerization was detected continuously as buoyancy change in distilled water by means of Archimedes's principle. It was converted to continuous electrical voltage signal in real time. The signal was properly conditioned and filtered and then it was stored in computer by a data acquisition(DAQ) board. By using this electronic instrument. the dynamic patterns of the polymerization shrinkage of eight commercial(Z-100, DenFil, AeliteFil, Z-250, P-60, SureFil, Synergy compact, and Tetric ceram) composite resins were measured and compared. The results were as follows. 1. From this project of developing instrument, the ability has been achieved that can acquire and process data of electrical signal transformed from various physical phenomenon by using temperature, displacement. photo. and force transducer. As a consequence, the instrumentation and measurement system used to analyze the physical characteristics of various dental materials in dental research field can be designed, manufactured and implemented in lab. 2. This instrument has some advantages. It was insensible to temperature change and could measure true dynamic volumetric shrinkage in real time without complicated process. It showed accuracy and high precision results with small standard deviation. 3. The polymerization shrinkage of composites was significantly different between brands and ranged from 2.47% to 3.89%, The order of polymerization shrinkage was as follows, in order of increasing shrinkage, SureFil, P60, Z250, Z100, Synergy compact. DenFil, Tetric ceram, and AeliteFil. 4. The polymerization shrinkage rate per unit time, dVol%/dt, showed that the instrument can provide an indirect research method for polymerization reaction kinetics.

  • PDF

Evaluation of New Selective Molecularly Imprinted Polymers for the Extraction of Resveratrol from Polygonum Cuspidatum

  • Cao Hui;Xiao Jian Bo;Xu Ming
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.324-330
    • /
    • 2006
  • Four different molecularly imprinted polymers (MIPs) were prepared using resveratrol as the template, methacrylic acid (MAA) or acrylamide (AA) as functional monomers, 2,2-azobisisobutyronitrile (AIBN) as the initiator, and thermo- or photo-induced polymerization. The ability of the different polymers to rebind selectively not only the template but also other phenols was evaluated. In parallel, the influence of the different templates and functional monomers used during polymer syntheses on the performance of the obtained MIPs was also studied through different rebinding experiments. The binding ability and selectivity of the polymer were studied by static balance method and Scatchard analysis. It was concluded that AA-based polymer by photo-induced polymerization presents the best properties to be used as a selective absorbent for the extraction of resveratrol.

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.

MICROHARDNESS OF ESTHETIC RESTORATIVE MATERIALS CURED BY 3 TYPES OF NARROW-BANDED WAVELENGTH (중합가시광 파장대에 따른 심미성 수복재의 미세경도 변화)

  • 김현철;조경모;신동훈
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 2001
  • There are several factors affecting the effectiveness of polymerization of the esthetic restorative materials. Among those factors, the initiator. camphoroquinone has the unique characteristic. of which the light sensitivity is very dependent on the wavelength of blue light. Camphoroquinone shows the most light absorption ability in the wavelength range of 470nm. So most of clinically used light curing systems adopt this phenomenon as their polymerization mechanism. The most popular way of light curing system is standard 40 second curing. But the problem of standard curing technique shows the rapid increase of resin viscosity followed by the acceleration of polymerization and the limited resin flow, resulted in reduction of the physicalproperty of restoration by retained stress. The object of this study was to verify the effects of narrow-banded wavelength on the microhardness of the esthetic restorative materials. a composite resin and a compomer, using filters which have peak wave length of 430nm, 450nm, 470nm, respectively. The results were as follows: 1. All the experimental groups showed lower hardness value than the control group. 2. In DyractAP, the hardness value by wavelength showed the same changing pattern on both upper and lower surfaces. 3. In DenFil, the hardness value by wavelength showed different changing pattern on upper and lower surfaces. 4. The hardness ratio showed similar pattern to the hardness variation of lower surface. but there was no significant difference between measurement in 10 minutes and 3 days later, besides the increase of hardness value.

  • PDF

POLYMERIZATION ABILITY OF SEVERAL LIGHT CURING SOURCES ON COMPOSITE RESIN (광원에 따른 중합광의 복합레진 중합 능력 비교)

  • Shin, Hye-Jin;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.156-161
    • /
    • 2003
  • The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied ; one is to follow the manufacturers recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen. The results were as follows. 1 The composite cured with LED showed equal to higher microhardnesss than halogen. 2. The composite was cured with plasma arc by manufacturers recommendation showed lowest micro-hardness at all thickness. However, when curing time was extended, microhardness was higher than the others. In conclusion, this study suggested that plasma arc needs properly extended curing time.

Photopolymerization of Vinyl Monomers Using Organic Initiators

  • Kim, Myoung-Hee;Lee, Jun;Cha, Hyo Chang;Ham, Heui-Suk;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • This miniaccount presents the selective examples of our recent discoveries in the photopolymerization of vinyl monomers using the organic initiators such as hydrosilanes, poly(hydroarylsilane)s, benzoin silyl ethers, and thianthrene cation radical. In the photopolymerization of vinyl monomers with silanes polysilanes, while the polymerization yields and polymer molecular weights of the poly(MMA)s containing the silyl moieties decreased, the TGA residue yields and intensities of SiH stretching IR bands increased as the mole ratio of the silanes over MMA increased. The hydroarylsilane and poly(hydroarylsilane) seemed to influence strongly on the photopolymerizaiton of olefinic monomers as both chain initiation and chain transfer agents. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. Benzoin silyl ethers and thianthrene cation radical also exhibit the photoinitiating ability in the photopolymerization of MMA.

  • PDF

Comprehensive Review on Post-polymerization Modification of Hydroxyl-Terminated Polybutadiene (HTPB)

  • Sungyoung Yoon;Seulah Lee;Jongbok Lee
    • Elastomers and Composites
    • /
    • v.59 no.3
    • /
    • pp.108-120
    • /
    • 2024
  • Due to its unique physical, mechanical, and chemical properties, hydroxyl-terminated polybutadiene (HTPB) is an essential telechelic polymer that is used and applicable in areas ranging from automotive to aerospace and coatings industries. It is a key precursor in polyurethane chemistry and is celebrated for its versatility and ability to undergo various post-polymerization modifications to meet specific industrial needs. This review focuses on the sophisticated methodologies employed to enhance the stability and functionality of HTPB through targeted chemical modifications. Representative techniques include hydrogenation, which suppresses the oxidation susceptibility of polymers by saturating weak double bonds, and epoxidation, which introduces epoxy groups that increase the reactivity and compatibility with polar additives. These modifications not only preserve the inherent attributes of HTPB, they also amplify their utility across a spectrum of applications, from aerospace to automotive industries, where enhanced material performance is critical. This study outlines the challenges in modifying HTPB, discusses the chemical strategies employed, and showcases the improved performance characteristics of the resulting polymers, thus providing a comprehensive overview of the current advancements and future potential of HTPB utilization.