• 제목/요약/키워드: polymeric foam

검색결과 47건 처리시간 0.023초

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

폴리머 폼의 선박 및 해양구조물 적용을 위한 극저온 기계적 거동 특성 분석 (Comparative Study on Mechanical Behavior of Low Temperature Characteristics of Polymeric Foams for Ships and Offshore Structures)

  • 박성보;김정현;이제명
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.495-502
    • /
    • 2014
  • Glass-reinforced polyurethane foam (R-PUF) is widely used as the primary and secondary insulation of Mark-III type liquefied natural gas (LNG) cargo system. And, polyurethane foam (PUF) and polyisocyanurate foam (PIR) are often used for insulation of onshore structures or LNG storage and pipeline system. These polymeric foam materials are known for the characteristics that mechanical properties are dependent on strain rate and temperature. In this study, compression tests for R-PUF, PIR, and PUF were carried out for the estimation of mechanical behaviors under the cryogenic environment. The range of thermal condition was from room temperature to 110K and strain rates were $10^{-3}s^{-1}$ and $10^{-4}s^{-1}$. The test results were analyzed based on the conditions of strain-rate and temperature.

유한요소해석을 이용한 직조 탄소섬유 발포 고분자 샌드위치 구조의 압축특성 (FE Analyses of the Compressive Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structure)

  • 장승환;전성식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.194-197
    • /
    • 2004
  • In this paper, compressive characteristics of carbon fabric skin with polymeric foam core sandwich structure were investigated by FE analyses and compressive tests of polyurethane foam were also conducted with respect to temperature changes, which were determined by curing processes of epoxy or polyester resin to obtain mechanical behaviour of polyurethane foam. FE analyses indicated variation of parameters with respect to manufacturing pressure, which have comparatively massive effect upon mechanical properties of sandwich structures, i.e. wavelength as well as crimp angle of carbon fabric

  • PDF

폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식 (Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam)

  • 권순범;이제명
    • 한국전산구조공학회논문집
    • /
    • 제31권4호
    • /
    • pp.191-197
    • /
    • 2018
  • 폴리머 폼은 다공성을 가장 큰 특징으로 하는 재료이기 때문에, 본 연구에서 비가역 열역학 관점을 기반으로 폴리머 폼의 기공 성장 및 합체를 고려한 손상 탄성 구성방정식을 개발하였으며, 개발된 구성방정식은 unilateral 손상의 효과를 고려하였다. 유한요소해석의 적용을 위해 상용 유한요소해석 프로그램인 ABAQUS의 사용자 서브루틴 UMAT을 이용하여 제안된 구성방정식을 수치적으로 구현하였다. 비선형 유한요소해석 결과와 폴리머 폼의 인장 시험 결과와 비교를 통해 제안된 손상 모델의 유효성을 검증하였으며, 제안된 구성방정식의 재료모델상수가 손상에 미치는 영향에 대해 분석하였다.

콩기름을 이용한 폴리우레탄 포옴의 합성 (Synthesis of Polyurethane Foam with Soybean Oil)

  • 양도현;이광용;신재섭
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.731-736
    • /
    • 1999
  • 식물성 천연 유지인 콩기름을 peracetic acid로 에폭시화 시킨 후에 황산 촉매 하에서 메탄올과 반응시켜서 OH-value가 186(mg KOH/g)인 폴리올을 합성하였다. 합성한 폴리올에 계면활성제로는 silicon계 B-8409를, 발포제로는 증류수를, 촉매로는 dimethylcyclohexylamine을, 이소시아네이트로는 polymeric MDI를 사용하여 폴리우레탄 포옴을 합성하였다. 형성된 포옴의 밀도, 압축강도, 압축탄성률, cell의 구조 등을 조사하였다. MDI의 당량비를 변화시켜 가며 포옴을 형성시켜 보았으며, MDI index를 105로 고정하고, 발포제, 계면활성제, 촉매의 양을 각각 변화시켜 가며 포옴을 형성시켜 보았다. MDI index가 증가할수록 밀도와 압축 물성이 증가하였다.

  • PDF

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

자동차용 시트 폼의 시간 의존적 거동 예측을 위한 수치해석 (Numerical Analysis to Predict the Time-dependent Behavior of Automotive Seat Foam)

  • 강건;오정석;최권용;김대영;김헌영
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.104-112
    • /
    • 2014
  • Generally, numerical approaches of evaluation for vehicle seat comfort have been studied without considering time-dependent characteristics and the only seating moment have been considered in seat design. However, the comfort not only at the seating moment but also in the long-term should be evaluated because the passengers are sitting repeatedly on the seat to drive the vehicle for hours. So, the aim of this paper is to carry out a quantitative evaluation of the time-dependent mechanical characteristics of seat foams and to suggest a process for predicting the viscoelastic deformation of seat foam in response to long-term driving. To characterize the seat materials, uniaxial compression and tension tests were carried out for the seat foam and stress relaxation tests were performed for evaluating the viscoelastic behavior of the seat foam. A unit solid element model was used to verify the reliability of the material model with respect to the compression behavior of the seat foam. It is not straightforward to evaluate the time-dependent compression of foams using the explicit solver because the viscoelastic material model is limited. To use the explicit solver, the material model must be modified using stress-degradation data. Normalized stress relaxation moduli were added to the stress-strain curves obtained under static conditions to achieve a time-dependent set of stress-strain relations that were compatible with the implicit solver. There was good agreement between the analysis results and experimental data.

직조 탄소섬유 발포 고분자 샌드위치 구조의 굽힘특성 (Bending Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structures)

  • 장승환;장태성;최진호;전성식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.131-134
    • /
    • 2004
  • In this paper, a representative unit volume (RUV) model was employed to simulate thermoforming process of carbon fabric-polymeric foam sandwich structures. Thermoforming simulations, which capture crimp angles and amplitude changes of carbon fabric with respect to different types of foams under the operating pressure were conducted with the help of RUV model. Changed shapes of tow structure after thermoforming were reflected in the two dimensional to determine mechanical properties of skin parts, i.e_ carbon fabric composites after thermoforming. Bending simulations with respect to different foam systems as well as different moduli of carbon fabric composites were successfully carried out by using properties obtained from two-dimensional analyses.

  • PDF

Improving Light Stability of Natural Rubber Latex Foam

  • Shim, Chang Su;Oh, Jeong Seok;Hong, Chang Kook
    • Elastomers and Composites
    • /
    • 제50권2호
    • /
    • pp.81-86
    • /
    • 2015
  • In this study, natural rubber latex foam was prepared in order to replace commercialized polyurethane foams as a car seat material. Physical properties of the latex foam were investigated and the light stability was improved. The latex foam was mixed in an aqueous solution state, and the degree of foaming and the accelerator ratios were appropriately controlled. Tensile properties, hysteresis and dynamic mechanical properties of the latex foam were measured to compare with those of polyurethane foams. UV light absorbers and radical scavengers were added for improving light stability of the latex foam. Xenon lamp test was conducted to investigate the effects of the reagents on light stability. Our results revealed that the prepared latex foam including a light absorber with an antioxidant showed excellent light stable performances.

계면수 변화에 따른 CFRP/Foam 원형부재의 에너지 흡수특성 (Energy Absorption Characteristics of CFRP/Foam Circular Members according to Interface Number)

  • 최주호;이길성;양인영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.603-608
    • /
    • 2010
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP(Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. Test was executed in order to compare the results to the energy absorption and collapse shape. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated. According to the experimental results, specimens filled with foam are higher total energy absorption than the other specimens not filled with the foam.