• 제목/요약/키워드: polymerase

검색결과 5,015건 처리시간 0.027초

Biochemical and Immunological Characterization of the DNA Polymerase and RNase H in Feline Leukemia Virus (고양이 백혈병 바이러스의 DNA Porymerase와 RNase H의 생화학적 및 면역학적 연구)

  • Park, Hyune-Mo
    • The Korean Journal of Zoology
    • /
    • 제22권4호
    • /
    • pp.141-152
    • /
    • 1979
  • Feline leukemia virus DNA polymerase was purified by ion-exchange and nucleic acid affinity chromatographies. The enzyme consists of a single polypeptide chain of approximately 72, 000 molecular weight as determined by both of a glycerol density gradient centrifugation and SDS-polyacrylamide gel electrophoresis. The preferred divalent cation for DNA synthesis is $Mn^2+$ on a variety of template-primers, and its optimum concentration appears to be significantly lower than reported results of other mammalian type-C viral enzymes. The divalent cation requirement for maximum activity of RNase H is similar to those of DNA polymerase. Both DNA polymerase and RNase H activities appear to reside on the same molecule as demonstrated by the copurification of both activities through various purification steps. An additional RNase H without detectible polymerase activity was generated by a limited chymotrypsin digestion. This RNase H activity was inhibited equally effectively as RNase H in the intact reverse transcriptase by antisera prepared against reverse transcriptase of feline leukemia virus. Neutralization and binding test showed that antibody binding to reverse transcriptase molecule did not completely inhibit the polymerase activity.

  • PDF

Temporal Expression of RNA Polymerase II in Porcine Oocytes and Embryos

  • Oqani, Reza;Lee, Min Gu;Tao, Lin;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • 제36권4호
    • /
    • pp.237-241
    • /
    • 2012
  • Embryonic genome activation (EGA) is the first major transition that occurs after fertilization, and entails a dramatic reprogramming of gene expression that is essential for continued development. Although it has been suggested that EGA in porcine embryos starts at the four-cell stage, recent evidence indicates that EGA may commence even earlier; however, the molecular details of EGA remain incompletely understood. The RNA polymerase II of eukaryotes transcribes mRNAs and most small nuclear RNAs. The largest subunit of RNA polymerase II can become phosphorylated in the C-terminal domain. The unphosphorylated form of the RNA polymerase II largest subunit C-terminal domain (IIa) plays a role in initiation of transcription, and the phosphorylated form (IIo) is required for transcriptional elongation and mRNA splicing. In the present study, we explored the nuclear translocation, nuclear localization, and phosphorylation dynamics of the RNA polymerase II C-terminal domain in immature pig oocytes, mature oocytes, two-, four-, and eight-cell embryos, and the morula and blastocyst. To this end, we used antibodies specific for the IIa and IIo forms of RNA polymerase II to stain the proteins. Unphosphorylated RNA polymerase II stained strongly in the nuclei of germinal vesicle oocytes, whereas the phosphorylated form of the enzyme was confined to the chromatin of prophase I oocytes. After fertilization, both unphosphorylated and phosphorylated RNA polymerase II began to accumulate in the nuclei of early stage one-cell embryos, and this pattern was maintained through to the blastocyst stage. The results suggest that both porcine oocytes and early embryos are transcriptionally competent, and that transcription of embryonic genes during the first three cell cycles parallels expression of phosphorylated RNA polymerase II.

Cloning, Expression, and Characterization of a Family B-Type DNA Polymerase from the Hyperthermophilic Crenarchaeon Pyrobaculum arsenaticum and Its Application to PCR

  • SHIN HEA-JIN;LEE SUNG-KYOUNG;CHOI JEONG JIN;KOH SUK-HOON;LEE JUNG-HYUN;KIM SANG-JIN;KWON SUK-TAE
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1359-1367
    • /
    • 2005
  • The gene encoding Pyrobaculum arsenaticum DNA polymerase (Par DNA polymerase) was cloned and sequenced. The gene consists of 2,361 bp coding for a protein with 786 amino acid residues. The deduced amino acid sequence of Par DNA polymerase showed a high similarity to archaeal family B-type DNA polymerases (Group I), and contained all of the motifs conserved in the family B-type DNA polymerases for $3'{\rightarrow}5'$ exonuclease and polymerase activities. The Par DNA polymerase gene was expressed under the control of the T7lac promoter on the expression vector pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RP. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $Hirap^{TM}$ Heparin HP column chromatographies. The optimum pH of the purified enzyme was 7.5. The enzyme activity was activated by divalent cations, and was inhibited by EDTA and monovalent cations. The half-life of the enzyme at $95^{\circ}C$ was 6 h. Par DNA polymerase possessed associated $3'{\rightarrow}5'$ proofreading exonuclease activity, which is consistent with its deduced amino acid sequence. PCR experiment with Par DNA polymerase showed an amplified product, indicating that this enzyme might be useful in DNA amplification and PCR-based applications.

Characterizations of DNA-polymerases Induced by SV40 Virus Infection of African Green Monkey Kidney Cells (AGMK) (SV 40 바이러스가 유도한 DNA 합성효소의 특성에 대한 연구)

  • 강현삼
    • Korean Journal of Microbiology
    • /
    • 제14권3호
    • /
    • pp.135-145
    • /
    • 1976
  • Confluent AGMK cells were infected by large plaque SV40 virus. Levels of DNA polymeras $({\alpha}\;and\;{\beta})$ were measured in the cytoplasm and the cell nucleus. The activities of DNA $polymerase-{\alpha}$ which found in both the cell nucleus and the cytoplasm were increased approximately eight folds at 48 hours after infection of SV40 virus. Only insignificant but constant amounts of DNA $polymerase-{\beta}$ were found either in the nucleus of the SV40 infected cell or of the uninfected cell. The characteristics of the SV40 virus induced DNA polymerases were compared with that of the uninfected cellular DNA polymerase in regard of the effects of pH, salt concentration, NEM concentration and temperature on those enzyme activities. No differential effect was found between both enzymes. Endouclease activities wre examined in the purified DNA $polymerase-{\alpha}\;and\;{\beta}$. The low level of endonuclease activity which might cut SV40 DNA 1 at one site was observed in the DNA $polymerase-{\alpha}$ whereas high but nonspecific endonuclease activities were found in the DNA $polymerase-{\beta}$.

  • PDF

Purification and Characterization of HCV RNA-dependent RNA Polymerase from Korean Genotype 1b Isolate: Implications for Discovery of HCV Polymerase Inhibitors

  • Kim, Jeong-Min;Lee, Mi-Kyoung;Kim, Yong-Zu
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.285-291
    • /
    • 2005
  • The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is the viral RNA-dependent RNA polymerase (RdRp), which is the essential catalytic enzyme for the viral replication and is an appealing target for the development of new therapeutic agents against HCV infection. A small amount of serum from a single patient with hepatitis C was used to get the genome of a Korean HCV isolate. Sequence analysis of NS5B 1701 nucleotides showed the genotype of a Korean isolate to be subtype 1b. The soluble recombinant HCV NS5B polymerase lacking the C-terminal 24 amino acids was expressed and purified to homogeneity. With the highly purified NS5B protein, we established in vitro systems for RdRp activity to identify potential polymerase inhibitors. The rhodanine family compounds were found to be potent and specific inhibitors of NS5B from high throughput screening (HTS) assay utilizing the scintillation proximity assay (SPA) system. The binding mode of an inhibitor was analyzed by measuring various kinetic parameters. Lineweaver-Burk plots of the inhibitor suggested it binds not to the active site of NS5B polymerase, but to an allosteric site of the enzyme. The activity of NS5B in in vitro polymerase reactions with homopolymeric RNA requires interaction with multiple substrates that include a template/primer and ribonucleotide triphosphate. Steady-state kinetic parameter, such as Km, was determined for the ribonucleotide triphosphate. One of compounds found interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitively with respect to UTP. Furthermore, we also investigated the ability of the compound to inhibit NS5B-directed viral RNA replication using the Huh7 cell-based HCV replicon system. The investigation is potentially very useful for the utility of such compounds as anti-hepatitic agents.

Purification and Characteristic Properties of DNA Polymerase $\alpha$ from Sea-Urchin, Hemicentrotus pulcherrismus (말똥 성게의 DNA Polymerase $\alpha$의 정제와 특성)

  • HA Mi-Suck;RYU Beung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제20권2호
    • /
    • pp.136-145
    • /
    • 1987
  • From the sea-urchin, Hemicentrotus pulcherrismus, we have purified by four column chromatographic steps for DNA polymerase $\alpha$ activity. The molecular weight of DNA polymerase u was determined to be around 137,000-138,000 by Sephadex G-200 gel filtration and SDS-polyacrylamide gel electrophoresis. The purified enzyme had the optimal activity at pH 7.4. This enzyme showed to be a function of the metal ion $K^+,\;Na^+$\;and\;Mg^{2+}$ employed as activators, the optimum $K^+$\;or\;Na^+ concentration were 20 mM or 25mM and the optimum $Mg^{2+}$ concentration was 10 mM. The enzyme activity was inhibited by N-ethyl-maleimide, aphidicolin, cytosine $\beta-D-arabinofuranoside$ 5'-triphoshate (ara CTP) and phosphonoacetic acid.

  • PDF

Cloning and Expression of K11 Phage RNA Polymerase (K11 RNA 중합효소의 Cloning 및 발현)

  • Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • 제9권1호
    • /
    • pp.19-24
    • /
    • 1997
  • Using the PCR(polymerase chain reaction method), gone 1 of phage K11 coding for K11 phage RNA polymerase has been cloned and expressed under the control of lac promoter. K11 phage RNA polymerase was conventionally purified through the DEAE-sephacel and Affigel blue column chromatographies. The 0.2-0.3 M $NH_4Cl$ fractions of DAEA-sephacel column chromatography showed K11 phage RNA polymerase activity and further purification with Affigel blue column chromatography showed nearly single protein band on SDS-polyacryl amide gel. K11 phage RNA polymerase, which is one of the T7 group phage RNA polymerase (E. coil phage T7, T3 and Salmonella tyhimurium phage SP6 RNA polymerase), shares high degrees of homology with the other T7 group phage RNA polymerase. Previously we constructed T7 and SP6 promoter variants and revealed promoter specificity of T7 and SP6 RNA polymerase (Lee and Kang, 1993). To investigate the promoter specificity of K11 RNA polymerase in vitro K11 promoter activity was measured with SP6 promoter variants. The SP6 promoter variant share highest degrees of sequence homology with K11 promoter sequence show strongest promoter activity.

  • PDF

Rapid and Simple Method to Prepare Functional Pfu DNA Polymerase Expressed in Escherichia coli Periplasm

  • Chae, Young-Kee;Jeon, Woo-Chun;Cho, Kyoung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.841-843
    • /
    • 2002
  • Pfu DNA polymerase from Pyrococcus furiosus was expressed in the E. coli periplasm, and the fully active polymerase was partially purified by applying osmotic shock, ammonium sulfate precipitation, and heat treatment. This method represents a new way of expressing and purifying functional Pfu DNA polymerase without the use of chromatography.

Analysis of Lactobacillus casei and Mutant Strains by Polymerase Chain Reaction (Polymerase Chain Reaction에 의한 Lactobacillus casei 및 돌연변이 균주들의 비교 분석)

  • Nam, Jin-Sik;Lee, Jeong-Jun;Shin, Myeong-Su;Na, Seog-Hwan;Baek, Young-Jin;Yoo, Min
    • Microbiology and Biotechnology Letters
    • /
    • 제22권6호
    • /
    • pp.577-583
    • /
    • 1994
  • To classify Lactobacillus casei strains on the basis of difference in their chromosomal DNA sequence, we have performed polymerase chain reactions on their chromosomal DNA by using random primers, and followed by analyzing randomly amplified polymorphic DNA fragments. We also developed a mini-preparative method to isolate PCR-grade chromosomal DNA from Lacto- bacillus casei strains within 3 hours. Based on RAPD pattems by polymerase chain reactions with degenerated random primers, 4 Lactobacillus casei strains and 2 mutant strains were successfully discriminated. Results were very sensitive, strain-specific and reproducible. It was also reliable. These results suggest that RAPD may be applied efficiently for the identification of several Lactoba- cillus casei strains.

  • PDF

Cloning and Expression of D-amino Acid Oxidise from Trigonopsis variabilis for Cephalosporin C Biotransformation (Cephalosporin C의 생변환을 위한 Trigonopsis variabilis의 D-amino Acid Oxidase 유전자의 클로닝 및 발현)

  • 이진형;정태완
    • KSBB Journal
    • /
    • 제10권3호
    • /
    • pp.264-270
    • /
    • 1995
  • Trigonopsis variabilis is a strong producer of D-amino acid oxidase that can transform cephalosporin C(ceph C) to ${\alpha}$-keto-adipyl-7-aminocephalosporanic acid(AKA-7ACA). Polymerase chain reaction (PCR) was applied to isolate the D-AAO gene from T. variabilis. To clone the PCR fragment, four different methods were examined using enzymatic reactions of Taq DNA polymerase, Klenow, T4 DNA polymerase I, Alkaline phosphatase Calf Intestinal, and T4 kinase. Ligation of phosphorylated blunt-end PCR fragment and dephosphorylated blunt-end of pUC18 plasmid yielded the best cloning efficiency One of recombinant E. coli transformants showed D-AAO activity against ceph C in both cell extracts and permeabilized cells.

  • PDF