• Title/Summary/Keyword: polymer-modified concrete

Search Result 200, Processing Time 0.024 seconds

A Study on Basic Properties of Grouting Motars for polymer-Modified preplaced Aggregate Concrete (프리팩트 폴리머 시멘트 콘크리트용 주입 폴리머 시멘트 모르터의 성질에 관한 연구)

  • 이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.350-355
    • /
    • 1998
  • Preplaced aggregate concrete in the building fields has recently been used in the partial repair works for damaged reinforced concrete structures, and polymer-modified mortars have been employed as grouting mortars for the preplaced aggregate concrete. The objective of this study is to clear the properties of polymer-modified grouting mortars. Polymer-modified mortars using a polystyrene acrylic(St/Ac) emulsion as grouting mortars for preplaced aggregate concrete are prepared with various mix proportions, and tested for flexural and compressive strengths, adhesion in tension. The flexural strength of emulsion-modified grouting mortars does not give much variation with increasing fly ash replacement for cement and sand-binder ratio. With increasing polymer-binder ratio, the flexural strength and adhesion in tension of St/Ac emulsion-modified grouting mortars increases, become nearly constant or reaches a maximum at a polymer-binder ratio of 5%. From the test results, St/Ac emulsion-modified grouting mortar with a polymer-binder ratio of 5%, a fly ash replacement of 10% for cement and sand-binder ratio of 1.0 is recommended as a grouting mortar for preplaced aggregate concrete.

  • PDF

Tension Stiffening Effects of MMA-Modified Polymer Concrete (MMA 개질 폴리머 콘크리트의 인장증강 효과)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • Direct tensile tests were carried out for the tensile members of MMA-modified polymer concrete with different steel kinds and steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, MMA-modified polymer concrete with $1000\;kgf/cm^2$ of compressive strength, steel with $5200\;kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel kinds, diameters and steel content, the strain energy exerted by concrete till the initial crack was $14-15\%$ of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of MMA-modified polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of MMA-modified polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and resign for the polymer concrete structural members.

  • PDF

Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions (폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

Physical Properties of Polymer-Modified Mortars Using Waste Concrete Fine Aggregate (재생잔골재를 사용한 폴리머 시멘트 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.793-797
    • /
    • 2005
  • This study was undertaken to examine the feasibility of recycling waste concrete fine aggregate to prepare polymer-modified mortars. The specimens of polymer-modified mortars were prepared by using styrene-butadiene rubber(SBR) latex and polyacrylic ester(PAE) emulsion as a polymer modifier. The formulations for specimens were prepared with various replacing ratios of waste concrete fine aggregates as parts of standard sand and various polymer cement ratios. For the evaluation of the performance of polymer-modified mortars, various physical properties were investigated. As a results, water cement ratio of polymer-modified fresh mortars increased with an increase of recycled fine aggregate, but decreased with an increase of polymer modifiers. The compressive and flexural strengths of polymer-modified mortars decreased with an increase of recycled fine aggregate, but flexural strengths increased with an increase of polymer modifiers.

  • PDF

A Study on the Lining of Reinforced Concrete Pipe Using Polymer-Modified Mortar (폴리머 시멘트 모르타르를 이용한 철근콘크리트 흄관 라이닝에 관한 연구)

  • 김영집;김한엽;조영구;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.333-338
    • /
    • 2000
  • At present, reinforced concrete pipe has been widely used as drain pipe. However, many reinforced concrete pipe is exposed at deteriorated environment by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar on the development in durability of reinforced concrete pipe. Polymer-modified mortars ate prepared with various polymer typer as cement modifier and polymer-cement ratio and rested for compressive and flexural strengths, adhesion in tension, acid resistance test, freezing and thawing test, and lining test of product in the field. From the rest results, it is apparent that polymer-modified mortars have good mechanical properties and durability as lining material. In practice, all polymers can be used as lining materials for reinforced concrete pip, and type of polymer, and polymer-cement ratio and curing conditions are controlled for good lining product.

  • PDF

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.

Lining of Reinforced Spun Concrete Pipes using Polymer-Modified Mortars (폴리머 시멘트 모르타르를 이용한 원심력 철근콘크리트관의 라이닝)

  • 조영국
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.406-413
    • /
    • 2001
  • Up to this day, reinforced spun concrete pipes have been widely used as drain pipes. However, many reinforced spun concrete pipes are exposed to the deteriorated environment such as freezing-thawing damage and chemical attack by the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. The purpose of this study is to evaluate the effects of lining by polymer-modified mortar using polymer dispersions as cement modifier on the development in durability of reinforced spun concrete pipe. The polymer-modified mortars were prepared with various polymer types and polymer-cement ratios, and tested for compressive and flexural strengths, acid, freezing-thawing, and heat resistances. And then, the reinforced spun concrete pipe product lined by polymer-modified mortars was tested for adhesion in tension and surface conditions according to curing temperatures in the field. From the test results, it is apparent that the polymer-modified mortars have good mechanical properties and durability as a lining material. In practice, all polymers can be used as lining the materials for reinforced spun concrete pipe, and types of polymer, and polymer-cement ratio and curing conditions are controlled for a good lining product.

Properties of Water- Permeable Concrete Using Recycled Aggregate (재생골재를 이용한 투수콘크리트의 특성)

  • Boek, Sung-Hyun;Lim, Heon-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.437-440
    • /
    • 2005
  • The effects of polymer-cement ratio and recycled aggregate content on the continuous void ratio, coefficient of permeablity, compressvie, tensile and flexural strengths of water-permeable polymer-modified concretes using recycled aggregate are examined. As a result, the continuous void ratio and coefficient of permeablity of the water-permeable polymer-modified concretes tend to decrease with increasing polymer-binder ratio. Regardless of the recycled aggregate content, the compressvie, tensile and flexural strengths of the water-permeable polymer-modified concretes wtend to increase with increasing polymer-cement ratio.

  • PDF

Properties of Polymer-Modified Mortars Containing FPR Wastes (FRP 폐기물을 첨가한 폴리머-시멘트 모르타르의 특성)

  • 이병기;김승문;황의환;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.84-92
    • /
    • 1996
  • The flexural and compressive strengths of polymer-modified mortars containing FRP wastes were investigated. The specimens of polymer-modified mortars containing FRP mortat were perpared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various FRP-sand ratios(10, 20, 30, 40, 50wt%). The compressive and flexural strengths of polymer-mokified mortars containing FRP wastes were decreased with an increase of FRP-sand ratio. But the compressive and flexural strengths of PAE polymer-modified mortar were more improved than OPC, whereas those of SBR and EVA polymer-modified mortars containing FRP wastes were decreased than OPC.

  • PDF

Drying Shrinkage of High-Fluidity Polymer-Modified Paste (고유동 폴리머 시멘트 페이스트의 건조수축)

  • Joo, Myung-Ki;Lee, Youn-Su;Yeon, Kyu-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.929-932
    • /
    • 2006
  • The effects of polymer-binder ratio, antifoamer content and shrinkage-reducing agent content on the setting time and drying shrinkage of high-fluidity polymer-modified pastes are examined. As a result, the setting time of the high-fluidity polymer-modified pastes tends to delayed with increasing polymer-binder ratio. Irrespective of the antifoamer content, the drying shrinkage of the high-fluidity polymer-modified pastes tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF