• Title/Summary/Keyword: polymer waveguide

Search Result 136, Processing Time 0.022 seconds

Polymer-waveguide Bragg-grating Devices Fabricated Using Phase-mask Lithography

  • Park, Tae-Hyun;Kim, Sung-Moon;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.401-407
    • /
    • 2019
  • Polymeric optical waveguide devices with Bragg gratings have been investigated, for implementing tunable lasers and wavelength filters used in wavelength-division-multiplexed optical communication systems. Owing to the excellent thermo-optic effect of these polymers, wavelength tuning is possible over a wide range, which is difficult to achieve using other optical materials. In this study the phase-mask technology, which has advantages over the conventional interferometeric method, was introduced to facilitate the fabrication of Bragg gratings in polymeric optical waveguide devices. An optical setup capable of fabricating multiple Bragg gratings simultaneously on a 4-inch silicon wafer was constructed, using a 442-nm laser and phase mask. During fabrication, some of the diffracted light in the phase mask was totally reflected inside the mask, which affected the quality of the Bragg grating adversely, so experiments were conducted to solve this issue. To verify grating uniformity, two types of wavelength-filtering devices were fabricated using the phase-mask lithography, and their reflection and transmission spectra were measured. From the results, we confirmed that the phase-mask method provides good uniformity, and may be applied for mass production of polymer Bragg-grating waveguide devices.

Low Loss Plastic Optical Fiber Coupler Incorporating a Polymer Tapering Waveguide Region (폴리머 테이퍼링 도파로 영역이 있는 저 손실 플라스틱 광섬유 커플러)

  • Kim, Kwang-Taek;Min, Seong-Hwan;Yun, Jung-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.867-871
    • /
    • 2012
  • In this paper, we proposed and demonstrated a low loss $1{\times}4$ type plastic optical fiber(POF) coupler incorporating a polymer tapering waveguide region. To avoid leakage loss at the interfaces between the POF and the polymer waveguide, we employed two POF transition regions, in which the cross section of the POF is adiabatically converted from a circular to a rectangular shape without change of its cross-section area. The device was fabricated based on a injection mold made of a silicon rubber. The fabricated POF coupler showed 1.33 dB of excess loss and 2.2 dB of flatness.

LiNbO3 integrated optic devices with an UV-curable polymer buffer layer

  • Jeong, Woon-Jo;Kim, Seong-Ku;Park, Gye-Choon;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.111-118
    • /
    • 2002
  • A new lithium niobate optical modulator with a polymer buffer layer on Ni in-diffused optical waveguide is proposed for the fist time, successfully fabricated and examined at a wavelength of 1.3 mm. By determining the diffusion parameters of Ni in-diffused waveguide to achieve more desirable mode size which is well matched to the mode in the fiber, the detailed results on the achievement of high optical throughput are reported. In addition, the usefulness of polymer buffer layer which can be applicable to a buffer layer in Ni in-diffused waveguide devices is demonstrated. Several sets of channel waveguides fabricated on Z-cut lithium niobate by Ni in-diffusion were obtained and on which coplanar traveling-wave type electrodes with a polymer-employed buffer layer were developed by a conventional fabrication method for characterizing of electro-optical performances of the proposed device. The experimental results show that the measured half-wave voltage is of ~10 V and the total measured fiber-to-fiber insertion loss is of ~6.4 dB for a 40 mm long at a wavelength of =1.3 mm, respectively. From the experimental results, it is confirmed that the polymer-employed buffer layer in LiNbO3 optical modulator can be a substitute material instead of silicon oxide layer which is usually processed at a high temperature of over $300^{\circ}C$. Moreover, the fabrication tolerances by using polymer materials in LiNbO3 optical modulators are much less strict in comparison to the case of dielectric buffer layer.

  • PDF

A Study on the Analysis of $1{\times}2$ Polymer Waveguide Thermo-optic switch ($1{\times}2$ 열광학 폴리머 광스위치의 해석에 관한 연구)

  • 곽혁용;김종헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.247-251
    • /
    • 1998
  • This work presents the analysis of $1\times2$ polymer waveguide thermo-optic switch using asymmetric Y-splitter at the wavelength of 1300nm. Because of the high thermo-optic coefficient of polymeric materials the design of efficient switches were feasible. For the numerical simulation of these switches the finite difference beam propagation method has been employed. Design rules for a $1\times2$ polymeric switch have been defined by using the numerical techniques.

  • PDF

The wavelength shift of waveguide Bragg grating with its polymer overclad irradiated by UV-laser (UV-laser 조사에 따른 폴리머 상부 클래드 광도파로 브래그 격자의 파장 변화)

  • Park, Dong-Yeong;Choe, Gi-Seon;Yun, Jae-Sun;Baek, Se-Jong;Mun, Hyeong-Myeong;Kim, Jin-Bong;Kim, Gwang-Taek;Im, Gi-Geon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.02a
    • /
    • pp.221-222
    • /
    • 2007
  • The UV laser trimming can be useful to have an accurate performance specification of the passive waveguide devices. In order to measure the change of the refractive index of polymer overclad layer under the irradiation of uv light in a high precision Bragg grating is fabricated on the silica core of planar waveguide and the corresponding transmittance spectrum was analyzed. An effective refractive index change of $4.7x10^{-5}$ was obtained for a straight waveguide when its $60{\mu}m$-thick overclad was irradiated by UV laser pulses of its total fluence 24 $J/cm^2$.

  • PDF

Near Infrared Laser Based on Polymer Waveguide Bragg Grating (폴리머 광도파로 브래그 격자 기반의 근적외선 레이저)

  • Kim, Kyung-Jo;Son, Nam-Seon;Kim, Jun-Whee;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.179-183
    • /
    • 2011
  • An external cavity laser operating at near infrared wavelength is demonstrated by incorporating polymer waveguide Bragg reflectors. 3rd order Bragg grating and oversized rip waveguide structure were designed by using the effective index method and the transmission matrix method. The polymer waveguide was fabricated using polymer materials with refractive indices of 1.462 and 1.435 for the core and the cladding layers, respectively. The external feedback laser with 875-nm Bragg grating exhibits single mode lasing located at 850-nm wavelength with an output power of 0 dBm, a 20-dB bandwidth of 0.2 nm and a side mode suppression ratio of 40 dB.

Integrated Optical Wave Plates Fabricated by Incorporating Reactive Mesogen in Polymer Waveguide (반응성 메조겐을 이용한 폴리머 광도파로 편광 변환기)

  • Do, Hyun-Soo;Chu, Woo-Sung;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.219-222
    • /
    • 2011
  • Integrated optical waveguide polarization converters are among the essential components for constructing various functional optical integrated circuits. The RM materials have been widely used in liquid crystal displays for fabricating waveplates. In this work, the polarization converters are fabricated by using a solution of Reactive Mesogen(RM) dissolved in liquid crystal(LC). In the middle of the polymer waveguide, a groove is defined by an oxygen plasma etching in a direction perpendicular to the optical waveguide. The solution of RM-LC is inserted to fill up the groove, and then liquid crystal is aligned in a certain direction by applying an electric field. After the alignment, RM materal is crosslinked by UV light so as to form a permanent waveplate. The phase retardation of the waveplate is determined by the width of the groove, and by the birefringence and the degree of alignment of the LC. Polarization conversion efficiency of 90% is obtained for the wavelength of 1550 nm.

Optical coupling propertis between side-polished fiber and metal-clad planar waveguide (측면 연마된 광섬유와 금속 클래드 평면도파로사이의 광결합특성)

  • 허상휴;김광택;이점식;마재평;정웅규;강신원;손경락;송재원
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.253-256
    • /
    • 2000
  • We report the experimental results for the coupling properties of the an side-polished single-mode fiber covered with metal-clad planar waveguide. The experimental results show that the large birefringence of a metal-clad planar waveguide facilitates the effective separation of TE and TM polarization in the spectral domain. Additionally the resonant wavelengths of the device are tuned based in the thermo-optic effect of polymer planar waveguide.

  • PDF