• Title/Summary/Keyword: polymer precursor

Search Result 237, Processing Time 0.023 seconds

Synthesis of Electrode Catalyst for Polymer Electrolyte Membrane Fuel Cells Using Colloidal Method (콜로이드법을 이용한 고분자전해질 연료전지용 백금전극 촉매의 제조)

  • Park, Jin-Nam
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Pt/carbon Electrode catalysts for PEMFC were synthesized using colloidal method. PSA (platinum sulfite acid) was used as a Pt precursor and CPA (chloroplatinic acid) was also used to replace relatively expensive PSA. Electrode catalysts prepared using PSA showed Pt particle size less than 3.5 nm and Pt yield higher than 90% in 10~40 wt% Pt loading. Electrode catalysts prepared using CPA also showed Pt particle size less than 4.4 nm and Pt yield higher than 80% in 10~40 wt% Pt loading. The MEA (membrane electrode assembly) using 20 wt% Pt/VXC72 showed equivalent I-V curve comparing with commercial electrode catalyst in single cell test.

Mechanical Property of Clay-polymer Nanofiber Composite Membrane (Clay를 함유한 Polysulfone 나노섬유 복합막의 제조 및 물리적 특성 연구)

  • Park, Yeji;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.284-289
    • /
    • 2017
  • In this study, natural clay as a filler was systematically integrated into polysulfone nanofibers to prepare polysulfone/clay composite membranes with mechanical properties. The composite nanofibers were formed by electrospinning of a mixed precursor of polysulfone and clay. The pore size of the composite membranes was adjusted by simply controlling the number of layers of nanofibers. The overall membrane properties were examined by SEM, contact angle, pore characteristics, tensile strength and water flux. In particular, the presence of clay within the nanofibers was confirmed with SEM images and the mechanical property of the composite nanofiber membranes was examined by tensile strength measurements. Thus, the prepared composite membranes were expected to be utilized for water treatment system.

Templated Formation of Silver Nanoparticles Using Amphiphilic Poly(epichlorohydrine-g-styrene) Film

  • Park, Jung-Tae;Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.301-306
    • /
    • 2009
  • This work has demonstrated that a novel amphiphilic poly(epichlorohydrine)-graft-polystyrene (PECH-g-PS) copolymer at 34:66 wt% was synthesized via atom transfer radical polymerization (ATRP) of styrene using PECH as a macroinitiator. The structure of the graft copolymer was characterized by nuclear magnetic resonance ($^1H$ NMR) and FTIR spectroscopy, demonstrating that the "grafting from" method using ATRP was successful. The self-assembled graft copolymer was used as a template film for the in-situ growth of silver nanoparticles from $AgCF_3SO_3$ precursor under UV irradiation. The in situ formation of silver nanoparticles with 6-8 nm in average size in the solid state template film was confirmed by transmission electron microscopy (TEM), UV-visible spectroscopy and wide angle X-ray scattering (WAXS). Differential scanning calorimetry (DSC) also displayed the selective incorporation and the in situ formation of silver nanoparticles within the hydrophilic PECH domains, probably due to stronger interaction of the silvers with the ether oxygens of PECH backbone than that with hydrophobic PS side chains.

Carbon rich fly ash and their nanostructures

  • Salah, Numan;Habib, Sami S.;Khan, Zishan H.;Alshahrie, Ahmed;Memic, Adnan;Al-ghamdi, Attieh A.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.23-31
    • /
    • 2016
  • Carbon rich fly ash was recently reported to have compositions that are ideal for use as a precursor and catalyst for carbon nanotube growth. This fly ash powder is mostly composed of pure carbon, predominantly present as sp2. In this work, the effect of sonication time on the morphology and structural properties of carbon rich fly ash particles is reported. The obtained results show that ultrasound treatment is an effective tool for producing ultrafine particles/fragments with higher porosity, which might be suitable for the adsorption of gasses. Moreover, carbon nanoparticles (CNPs) of this fly ash were produced in parallel using the ball milling technique, and were evaluated as reinforcements for epoxy based composites. These CNPs have almost spherical shapes with particle sizes of around 30 nm. They were found to have strong C=O carbonyl group bonds, which might be generated during the ball milling process. The tensile testing results of a fly ash CNP reinforced epoxy composite showed significant improvements in the mechanical properties, mainly in the stiffness of the polymer. The stiffness value was increased by around 23% of that of neat epoxy. These CNPs with chemically active groups might also be useful for other applications.

Influence of Pyrolysis Conditions and Type of Resin on the Porosity of Activated Carbon Obtained From Phenolic Resins

  • Agarwal, Damyanti;Lal, Darshan;TripathiN, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • In polymer precursor based activated carbon, the structure of starting material is likely to have profound effect on the surface properties of end product. To investigate this aspect phenolic resins of different types were prepared using phenol, mcresol and formaldehyde as reactants and $Et_3N$ and $NH_4OH$ as catalyst. Out of these resins two resol resins PFR1 and CFR1 (prepared in excess of formaldehyde using $Et_3N$ as catalyst in the basic pH range) were used as raw materials for the preparation of activated carbons by both chemical and physical activation methods. In chemical activation process both the resins gave activated carbons with high surface areas i.e. 2384 and 2895 $m^2/g$, but pore size distribution in PFR1 resin calculated from Horvath-Kawazoe method, contributes mainly in micropore range i.e. 84.1~88.7 volume percent of pores was covered by micropores. Whereas CFR1 resin when activated with KOH for 2h time, a considerable amount (32.8%) of mesopores was introduced in activated carbon prepared. Physical activation with $CO_2$ leads to the formation of activated carbon with a wide range of surface area (503~1119 $m^2/g$) with both of these resins. The maximum pore volume percentage was obtained in 3-20 ${\AA}$ region by physical activation method.

  • PDF

Effect of Nickel Nitrate Doping on β-type PVDF Layers Prepared by Electrostatic Spray Deposition (정전 분무법으로 제조한 β-형 PVDF 막에 미치는 니켈 질산염 첨가의 영향)

  • Hwang, Kyu-Seog;Kim, Myung-Yoon;Son, Byeongrae;Hwang-Bo, Seung;No, Hyeonggap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1317-1321
    • /
    • 2018
  • PVDF as a semicrystal polymer, having a structure with C-F dipole moments, has been widely investigated because of its excellent chemical stability, mechanical strength, and ferroelectricity. In this study, ferroelectic ${\beta}$ type - PVDF layer was prepared by using an electrostatic spray deposition method and the effects of the addition of Ni-nitrate in precursor solution on the properties of PVDF layer were evaluated. Crystallinity and chemical structure of the PVDF layer were analyzed by a X-ray diffraction and Fourier Transform Infrared Spectrophotometer. Surface structure and fractured cross section of the layer were examined by a field emission-scanning electron microscope. LCR meter was used to obtain the dielectric properties of the layer. As the addition of an inorganic metal salt in PVDF sol, ${\beta}$ type - PVDF crystals were appeared in the hydrated metal salts doped-layer since the strong hydrogen bondings $(O-H{\cdots}F-C)_n$ due to high polarity of OH- were formed.

A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membranes (SPEEK/PWA/Silica 복합막의 전기화학적 특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2529-2535
    • /
    • 2013
  • Sol-gel method was utilized to prepare SPEEK/PWA electrolyte composite membranes. TEOS was used as a precursor and phosphotungstic acid(PWA) as a catalyst for the sol-gel reaction. It was observed through FE-SEM analysis that the PWA and silica nanoparticles were uniformly dispersed into the polymer matrix. The water uptake of SPEEK/PWA/silica composite membranes was less affected by TEOS concentration at higher TEOS contents, while the water uptake decreased as TEOS concentration increased at lower TEOS contents. The proton conductivity of the composite membranes showed similar trend as the water uptake of the composite membranes. The methanol permeability of SPEEK/PWA/silica composite membranes decreased as TEOS concentration increased.

Fabrication of CuSn Nanofibers Prepared via Electrospinning

  • Choi, Jinhee;Park, Juyun;Choi, Ahrom;Lee, Seokhee;Koh, Sung-Wi;Kang, Yong-Cheol
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.245-248
    • /
    • 2017
  • The Cu and CuSn/PVP nanofibers were fabricated by electrospinning method by controlling various parameters. The precursor solution was prepared with copper(II) acetate monohydrate ($Cu(CH_3COO)_2$) and tin chloride dihydrate ($SnCl_2{\cdot}2H_2O$), and polyvinylpyrrolidone (PVP) for adjusting viscosity. The fabricated nanofibers were calcined at 873 K in Ar atmospheric environment for 5 hours to remove the solvent and polymer. The morphology and diameter of nanofibers were measured by optical microscopy (OM) with Motic image plus 2.0 program. The components and chemical environment were investigated with X-ray photoelectron spectroscopy (XPS). From the XPS survey spectra, we confirmed that CuSn/PVP nanofibers were successfully fabricated. The XPS peaks of C 1s and N 1s were remarkably decreased after calcination of the nanofibers at 873 K. It implies that the PVP was completely decomposed after calcination at 873 K.

The R & D of SiC Fiber Reinforced Composites for Energy and Transportation Applications

  • Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.5-13
    • /
    • 2006
  • Based on the inventions of continuous ceramic fibers, such as C, SiC, $Al_2O_3$ etc., by polymer precursor driven methods, there have been many efforts to fabricate ceramic continuous fiber reinforced composite materials with metals and ceramics matrices. The main purpose of the R & D efforts has been to produce materials for severe environments, including advanced energy systems, advanced transportation systems. The efforts have been started from the R & D of metal matrix composite materials and now the strong emphasis on ceramic matrix composites R & D can be recognized. This paper provides a brief review about the national efforts to establish advanced composite materials for future industries starting from mid 70s. C/Al and SiC/Al are the typical examples to be applied transportation systems and energy systems. The excellences in specific strength and overall mechanical properties, the excellences in environmental resistance make those materials as potential materials for advanced ocean construction and marine transportation systems. About the recent progress in ceramic fiber reinforced ceramic composites, advanced SiC/SiC composites including NITE-SiC/SiC will be introduced and the present status will be introduced.

  • PDF

Preparation of Activated Carbon Fiber Adsorbent for Low Level CO2 (저농도 이산화탄소 포집을 위한 초미세 탄소섬유 흡착제 제조 연구)

  • Kim, Dong Woo;Jung, Dong Won;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Adsorption is a plausible technology using solid adsorbents for dry capture of carbon dioxide ($CO_2$). In general, narrow size distribution of tiny pores and surface chemical functionalities of solid adsorbents enhance the adsorption capacity of gaseous $CO_2$ molecules. In order to utilize the advantages of fibrous adsorbents, this work prepared activated carbon nanofibers (ACNFs) via the electrospinning process using a polymer precursor of polyacylonitrile (PAN). The spun fibers were 390 nm to 580 nm in thickness with an average surface area of $27.3m^2/g$. The surface structure was improved by a programmed thermal activation at $800^{\circ}C$ in $CO_2$ atmosphere. It was also found that the nitrogen-groups including pyrrole and pyridine were created during the activation facilitaing the selective adsorption as forming enhanced active sites. The finally obtained adsorption capacities were 2.74 mmol/g for pure $CO_2$ flow and 0.74mmol/g for 3000 ppm.