• Title/Summary/Keyword: polymer pattern

Search Result 481, Processing Time 0.022 seconds

Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns

  • El-Heloua, Rafic G.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.245-260
    • /
    • 2015
  • In this study, nominal moment-axial load interaction diagrams, moment-curvature relationships, and ductility of rectangular hybrid beam-column concrete sections are analyzed using the modified Hognestad concrete model. The hybrid columns are primarily reinforced with steel bars with additional Glass Fiber Reinforced Polymer (GFRP) control bars. Parameters investigated include amount, pattern, location, and material properties of concrete, steel, and GFRP. The study was implemented using a user defined comprehensive $MATLAB^{(R)}$ simulation model to find an efficient hybrid section design maximizing strength and ductility. Generating lower bond stresses than steel bars at the concrete interface, auxiliary GFRP bars minimize damage in the concrete core of beam-column sections. Their usage prevents excessive yielding of the core longitudinal bars during frequent moderate cyclic deformations, which leads to significant damage in the foundations of bridges or beam-column spliced sections where repair is difficult and expensive. Analytical results from this study shows that hybrid steel-GFRP composite concrete sections where GFRP is used as auxiliary bars show adequate ductility with a significant increase in strength. Results also compare different design parameters reaching a number of design recommendations for the proposed hybrid section.

Changes on the Components of Free Polysaccharide from Cell Wall of Persimmon Fruit by Treatments of Cell Wall Degrading Enzymes (세포벽분해효소의 처리에 따른 감과실의 세포벽 유리 다당류의 변화)

  • 신승렬;김미현
    • Food Science and Preservation
    • /
    • v.2 no.1
    • /
    • pp.173-183
    • /
    • 1995
  • This paper was carried out to investigate changes in chromatograms of polysacctatides and soluble pectins on Sephadex G-50 and non-cellulosic neutral sugars of polysaccharides isolated from cell wall of persimmon fruits treated with polygalacturonase and $\beta$-galactosidase in vitro. The chromatogram pattern of soluble pectins extracted from cell wall treated with $\beta$-galactosidase on Sephacryl S-500 column were similar to those of untreatment, but contents of soluble pectins treated with $\beta$-galactosidase were different from those of untreatment. The patterns of chromatograms In soluble pectins extracted from cell wall treated with polygalacturonase were more complex and lower molecular polymer than those of other cell wall-degrading enzyme treatments. Non-cellulosic neutral sugar of polysaccharides in fraction I of soluble material treated with polygalacturonase was rhamnose, those in fraction II were similar to those in fraction III and contents of arabinose, xylose and glucose were higher than contents of other non-cellulosic neutral sugars. Non-cellulosic neutral sugars of polysaccharides in fraction I in soluble material by $\beta$-galactosidase treatment were rhamnose, arabinose, galactose and mannose. Content of glucose of polysaccharides in fraction II was higher than that in fraction I . Non-cellulosic neutral sugars treated with mixed enzyme were rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose. Compositions of non-cellulosic neutral sugars of polysaccharides in fraction I were similar to those in fraction II and III.

  • PDF

Manufacturing process of micro-nano structure for super hydrophobic surface (초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정)

  • Lim, Dong-Wook;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets

  • Mohammad Reza Halvaeyfar;Ehsanollah Zeighami;S. Mohammad Mirhosseini;Ali Hassani Joshaghani
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In many fiber concrete beams with Carbon Fiber Reinforced Polymer (CFRP), debonding occurs between the carbon sheets and the concrete due to the low strength of the bonding resin. A total of 42 fiber concrete beams with a cross-section of 10×10 cm with a span length of 50 cm are fabricated and retrofitted with CFRP and subjected to a 4-point bending test. Graphene Oxide (GO) at 1, 2, and 3 wt% of the resin is used to improve the mechanical properties of the bonding resins, and the effect of length, width, and the number of layers of CFRP and resin material are investigated. The crack pattern, failure mode, and stress-strain curve are analyzed and compared in each case. The results showed that adding GO to polyamine resin could improve the bonding between the resin and the fiber concrete beam. Furthermore, the optimum amount of nanomaterials is equal to 2% by the weight of the resin. Using 2% nanomaterials showed that by increasing the length, width, and number of layers, the bearing and stiffness of fiber concrete beams increased significantly.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

Buckling behavior of nonlinear FG-CNT reinforced nanocomposite beam reposed on Winkler/Pasternak foundation

  • Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Zakaria Belabed;Abdelmoumen Anis Bousahla;Mohamed Abdelaziz Salem;Khaled Mohamed Khedher
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.297-305
    • /
    • 2024
  • This study investigates the buckling behavior of CNTRC beams on a Winkler-Pasternak elastic foundation, considering their stiffness. To achieve the highest accuracy, the shear stiffness is taken into account based on the Higher-order Shear Deformation Theory (HSDT). A novel exponential power-law distribution of the CNT volume fraction across the beam thickness is employed to model CNTRC beams. Various reinforcement patterns are incorporated into the polymer matrix, featuring single-walled carbon nanotubes (SWCNT) that are both aligned and distributed. The effective mechanical properties of the CNTRC beam are predicted using the rule of mixtures. Hamilton's principle is applied to derive the differential equations of motion. This theoretical framework enables the validation of the approach by comparing numerical simulation results with previous studies. The impact of the exponent order (n), CNT volume fraction, geometrical ratio, and Winkler-Pasternak parameters on buckling analysis is thoroughly presented and discussed. The results indicate that, among the different types of analyzed CNTRC beams, the X-Beam pattern demonstrates the highest buckling load capacity.

Effect of Polymer, Calcium, Perlite and Chitosan in Soil Organic Amendment on Growth in Perennial Ryegrass (유기질 토양개량재에서 고분자 중합체, 칼슘, 펄라이트 및 키토산이 퍼레니얼 라이그래스의 생장에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.24-34
    • /
    • 2012
  • The study was carried out to investigate the effects of polymer, calcium, perlite and chitosan on the growth of perennial ryegrass (Lolium perenne L., PR) and to provide a basic information needed for their practical application when establishing garden, parks, athletic field and golf courses with these materials. A total of 24 treatment combinations were applied in the study. Treatments were made of water-swelling polymer (WSP), calcium, perlite and chitosan mixed in soil organic amendment (SOA). Germination rate, turfgrass coverage, turfgrass density and top growth were evaluated in PR under greenhouse conditions. Significant differences were observed for these growth characteristics among the treatments. Turfgrass density and plant height, evaluated on a weekly basis, varied with time after seeding. A proper mixing rate of WSP was considered to be lower 3% for the growth of PR with an exception of being below 6% for turfgrass density. Germination rate and early survival capacity were greatly influenced by calcium and chitosan among the elements of calcium, perlite, and chitosan. But there was little effect by perlite. Calcium and chitosan were most effective one for turfgrass density and coverage, respectively. Top leaf-growth was influenced by all three elements, but the greatest effect was highly linked with calcium. Chitosan was very effective in early germination and vertical leaf growth, as compared with the others. Future studies are required for measuring the effect of WSP, calcium, perlite and chitosan on the turf growth characteristics in root zone mixtures of sand+SOA before a practical field use.

The Fabrication and Characterization of Embedded Switch Chip in Board for WiFi Application (WiFi용 스위치 칩 내장형 기판 기술에 관한 연구)

  • Park, Se-Hoon;Ryu, Jong-In;Kim, Jun-Chul;Youn, Je-Hyun;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • In this study, we fabricated embedded IC (Double Pole Double throw switch chip) polymer substrate and evaluate it for 2.4 GHz WiFi application. The switch chips were laminated using FR4 and ABF(Ajinomoto build up film) as dielectric layer. The embedded DPDT chip substrate were interconnected by laser via and Cu pattern plating process. DSC(Differenntial Scanning Calorimetry) analysis and SEM image was employed to calculate the amount of curing and examine surface roughness for optimization of chip embedding process. ABF showed maximum peel strength with Cu layer when the procuring was $80\sim90%$ completed and DPDT chip was laminated in a polymer substrate without void. An embedded chip substrate and wire-bonded chip on substrate were designed and fabricated. The characteristics of two modules were measured by s-parameters (S11; return loss and S21; insertion loss). Insertion loss is less than 0.55 dB in two presented embedded chip board and wire-bonded chip board. Return loss of an embedded chip board is better than 25 dB up to 6 GHz frequency range, whereas return loss of wire-bonding chip board is worse than 20 dB above 2.4 GHz frequency.

  • PDF

Effect of Electrochemical Reduction of Ruthenium Black Cathode Catalyst on the Performance of Polymer Electrolyte Membrane Fuel Cells (캐소드 루테늄 촉매의 전기화학적 환원 처리가 고분자 전해질 연료전지 성능에 미치는 영향)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2011
  • Ru black was used for cathode catalyst in polymer electrolyte membrane fuel cell which showed low performance at the initial test. However, it was observed that the performance of Ru black cathode was dramatically enhanced after certain kind of experiment compared with initial one. It might be due to an electrochemical treatment in which a voltage was applied to the Ru cathode for constant period time. When a constant potential of 0.1 V was applied to Ru cathode for 30 min, the fuel cell performance of Ru cathode showed the best results. In order to investigate the effect of electrochemical treatment on the performance enhancement, the characteristics of electrochemically treated Ru black was compared with that of Ru black which was reduced under $H_2$ atmosphere. From XRD results, it was turned out that Ru black was not completely converted to metallic Ru by electrochemical treatment, but it is sufficient to be one of reasons for the performance enhancement. According to the results of CO stripping voltammetry, it was observed that some Ru was removed from Ru electrode by electrochemical treatment which might have a bad effect on the fuel cell performance. The removal of some Ru from as-received Ru black by electrochemical treatment is also another reason for the enhancement of fuel cell performance.

Photoinduced Alignment Based on the Blend of Poly(vinyl cinnamate) and Oligomeric Cinnamate via Linear Polarized UV Irradiation onto Groove Patterned Surface (폴리(비닐 신나메이트)와 을리고머 신나메이트 블렌드를 기반으로 한 그루브 패턴 표면의 광배향막)

  • Sung, Shi-Joon;Kim, Mi-Ri;Ahn, Do-Won;Kim, Dae-Hwan;Kang, Jin-Kyu;Park, Jung-Ki;Cho, Kuk-Young
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • Photo-alignment property of groove patterned surface prepared from blend of poly (vinyl cinnamate) (PVCi) and oligomeric dicinnamate was investigated for the application for alignment layer of liquid crystal display. The study of the photoreaction kinetics using UV-vis spectrum with the irradiation time showed that the reaction rate of oligomeric cinnamate was enhanced compared to that of PVCi. Blend where PVCi was main component showed a slight improvement on the photoreaction rate. It was unable to obtain groove patterned surface only using oligomeric cinnamate itself owing to the high crystalline character. However, blending of PVCi made it possible to obtain clear surface pattern. Molecular orientation could be confirmed from the polar plot data. It can be suggested that blend of oligomeric cinnamate and polymeric cinnamate is promising material for the photoalignment layer.