• Title/Summary/Keyword: polymer network

Search Result 382, Processing Time 0.023 seconds

In-Situ Formation of Porous HAp Using Polymer Foam Process (폴리머 발포법을 이용한 다공성 HAp 지지체의 제조 및 특성 평가)

  • Kim, Zin-Kook;Ji, Sang-Yong;Ji, Hyung-Bin;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.289-293
    • /
    • 2008
  • Porous HAp with three-dimensional network channels was prepared in a polymer foam process using a in-situ formation. HAp/polyol with various HAp solid contents was formed with an addition of isocyanate. Under all conditions, the obtained porous HAp had pore sizes ranging $50\;{\mu}m$ to $250\;{\mu}m$. The influence of the HAp content on the physical and mechanical properties of porous HAp scaffolds was investigated. As the solid content increased, the porosity of the porous HAp decreased from 79.3% to 77.9%. On the other hand, the compressive strength of the porous HAp increased from 0.7 MPa to 3.7 MPa. With a HAp solid content of 15 g, the obtained porous HAp had physical properties that were more suitable for scaffolds compared to other conditions.

Synthesis and Characterization of waterborne polyurethane based on castor oil (Castor Oil 기반의 수분산 폴리우레탄의 합성 및 특성)

  • Bae, Ji-Hong;Kim, Eunyoung;Kang, Kyung Seok;Park, Duck-Jei
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.179-182
    • /
    • 2017
  • Waterborne polyurethanes(WPU) based on castor oil were successfully prepared using polycaprolactone diol(PCL), castor oil(CO) and 4,4'-methylene dicyclohexyl diisocyanate($H_{12}MDI$) as soft segment part, dimethylolbutanoic acid (DMBA) as emulsifier, and trimethylamine(TEA) as neutralizer based on different molecular weight of prepolymer. The various properties such as mechanical strength and surface reforming were evaluated using UTM, contact angle, FE-SEM based on the different molecular weight of polyol. Waterborne polyurethanes based on castor oil could be considered as a promising candidate to be applied the various adhesion fields.

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung;Nah, Jae-Woon;Cho, Kil-Won;Kim, Seong-Hun;Hahn, Ai-Ran
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1485-1489
    • /
    • 2003
  • The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.

Development of Crosslinked Sulfonated Poly(ether sulfone)s as Novel Polymer Electrolyte Membranes (새로운 연료전지용 술폰화된 PES계 가교 고분자 전해질 막의 개발)

  • Oh, Young-Seok;Lee, Myung-Gun;Kim, Tae-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.345-354
    • /
    • 2009
  • Sulfonated poly(ether sulfone)s (PESs) with a network structure were prepared by heat-induced crosslinking of the allyl-terminated telechelic sulfone polymers using a bisazide and their structure was analyzed by $^1H$ NMR. Having both uniform distribution of the hydrophilic conductive sites and controlled hydrophobic nature by minimized crosslinking, the crosslinked polymer (PES-60) membrane offered excellent proton conductivity at high temperature with a good thermal stability. In addition, selectivity of the crosslinked membrane (PES-60) was more than three times than that of Nafion$^{(R)}$.

Molecular Behavior and Electro-Chemical Properties of Dendrimer and Staff-type Polymer Monolayers in Crown Function Group (크라운 기능기를 포함한 덴드리머 및 Staff-type 고분자 단분자막의 분자거동 및 전기ㆍ화학적 특성)

  • 장정수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.213-213
    • /
    • 2003
  • We investigated the monolayer behavior at the air-water interface with metal solution, the surface morphologies and the electrical properties such as conductivity, The calculated conductivity values of pure water subphase and its complexes with L $i^{+}$ ions are 5.6$\times$10$^{-l6}$ and 1.9$\times$10$^{-14}$ [S/cm], respectively. And the calculated barrier height D values of pure water subphase and its complexes with Li. ions are 0.70 and 0.66 [eV], respectively. We also attempted to fabricate a crown dendrimer Langmuir-Blodgett (LB) films containing functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. In AFM images. the larger domains irregularly shaped structures on the top while the smaller ones were free from such defects. In conclusion, it is demonstrated that the metal ion around dendrimer and polymer included crown function group can contribute to make formation of network structure among crown function group and result in change of electrical properties.s.s.

Molecular Behavior and Electro-Chemical Properties of Dendrimer and Staff-type Polymer Monolayers in Crown Function Group (크라운 기능기를 포함한 덴드리머 및 Staff-type 고분자 단분자막의 분자거동 및 전기ㆍ화학적 특성)

  • 장정수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.213-218
    • /
    • 2003
  • We investigated the monolayer behavior at the air-water interface with metal solution, the surface morphologies and the electrical properties such as conductivity, The calculated conductivity values of pure water subphase and its complexes with L $i^{+}$ ions are 5.6$\times$10$^{-l6}$ and 1.9$\times$10$^{-14}$ [S/cm], respectively. And the calculated barrier height D values of pure water subphase and its complexes with Li. ions are 0.70 and 0.66 [eV], respectively. We also attempted to fabricate a crown dendrimer Langmuir-Blodgett (LB) films containing functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. In AFM images. the larger domains irregularly shaped structures on the top while the smaller ones were free from such defects. In conclusion, it is demonstrated that the metal ion around dendrimer and polymer included crown function group can contribute to make formation of network structure among crown function group and result in change of electrical properties.s.s.

Impedance Properties of Electroluminescent Device Containing Blended Polymer Single-Layer (고분자 블렌드를 이용한 EL 소자의 임피던스 특성)

  • 김주승;서부완;구할본;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.332-335
    • /
    • 2000
  • We fabricated organic electroluminescent (EL) devices with single layer of poly(3-dodeoylthiophene) (P3DoDT) hlended with different amounts of poly(N-vinylcarbazole) (PVK) as a emitting layer. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and it's can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-brightness characteristics of devices applied LiF layer, current and brightness increased with increasing applied voltage. The brightness of the device have a molar ratio 1:1 with LiF layer was about 10 times larger than that of the device without PVK at 6V. Electrical impedance properties of ITO/emitting layer/LiF/Al devices were investigated. In the Cole-Cole plots of impedance data, one semicircle was observed. Therefore, the equivalent circuit for the devices can be designed as a single parallel resistor and capacitor network with series resistor.

  • PDF

Observation of Interfacial Adhesion in Silica-NR Compound by Using Bifunctional Silane Coupling Agent (양기능성 커플링제 실란에 의한 실리카-천연고무 복합소재의 계면간 결합 고찰)

  • Lee, Jong-Young;Kim, Sung Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.240-246
    • /
    • 2015
  • Formation of a strong 3-dimensional interfacial network structure via chemical reaction between hydroxyl group on silica surface and NR chain by the addition of bis(triethoxysilylpropyl)tetrasulfide (TESPT) into silica-filled NR compound was observed by using Py-GC/MS and SEM. Addition of TESPT into silica-filled NR compound decreased scorch time ($t_{10}$) due to increased sulfur content, and reduced cure rate index (CRI) via continuous reaction between sulfur atoms in TESPT, which acted as a sulfur donor, and activators and/or accelerators. Addition of TESPT in the compound improved processability and mechanical properties of the compound. Overall, we observed that the addition of TESPT into the silica-filled NR compound formed a silica-TESPT-NR network, and thus the degree of crosslinking was increased resulting in improved mechanical properties.

Dehydrocoupling of Bis(silyl)alkylbenzenes to Network Polysilanes, Catalyzed by Group 4 Metallocene Combination

  • Kim, Myoung-Hee;Lee, Jun;Moo, Soo-Yong;Kim, Jong-Hyun;Ko, Young Chun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Bis(silyl)alkylbenzenes such as bis(1-sila-sec-butyl)benzene (1) and 2-phenyl-1,3-disilapropane (2) were synthesized in high yields by the reduction of the corresponding chlorosilanes with $LiAlH_4$ in diethyl ether. The dehydrocoupling of 1 and 2 was performed using group IV metallocene complexes generated in situ from $Cp_2MCl_2$/Red-Al and $Cp_2MCl_2$/n-BuLi (M = Ti, Hf), producing two phases of polymers. The TGA residue yields of the insoluble polymers were in the range of 64-74%. The molecular weights of the soluble polymers produced ranged from 700 to 5000 ($M_w$ vs polystyrene using GPC) and from 500 to 900 ($M_w$ vs polystyrene using GPC). The dehydropolymerization of 1 and 2 seemed to initially produce a low-molecular-weight polymer, which then underwent an extensive cross-linking reaction of backbone Si-H bonds, leading to an insoluble network polymer.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.