• Title/Summary/Keyword: polymer membranes

Search Result 756, Processing Time 0.026 seconds

Development of PolymerElectrolytes Based on Ionic Liquids forHigh Temperature/Low Humidity PEFC Applications (고온/저가습 고분자전해질 연료전지를 위한 이온성 액체 기반 고분자 전해질막 개발)

  • Sekhon, Satpal Singh;Park, Jin-Soo;Cho, Eun-Kyung;Park, Gu-Gon;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.40-43
    • /
    • 2008
  • High temperature polymer electrolyte membranes incorporating ionic liquids (ILs) in different polymers such as commercial fluorinated polymers, sulfonated polymers and recasted nafion have been developed. ILs based on imidazolium cation and different anions possess high ionic conductivity and good thermal stability and have been used in the present study. The membranes containing IL show conductivity ${\sim}10^{-2}S\;cm^{-1}$ above $100^{\circ}C$ under anhydrous conditions and are thermally stable up to $250-300^{\circ}C$. IL acts as a conducting medium in these electrolytes and plays the same role as played by water in fully hydrated nafion membranes. Due to high conductivity and good thermal stability, these membranes are promising materials for PEFCs at higher temperatures under anhydrous conditions.

  • PDF

Performance of Anion Charged Copoly(1,2,4-benzenetricarboxylate/bis[4-(3-aminophenoxy)phenyl]sulfone/3,3',4,4'-benzophenone tetracar boxylate/1,2,3,4-butanetetracerboxylate) Ultrafiltration Membranes (음이온성 Copoly(1,2,4-benzenetricarboxylate/bis[4-(3-aminophenoxy)phenyl]sulfone/3,3',4,4'-benzophenonetetracarboxylate/1,2,3,4-butanetetracerboxylate) 한외여과막의 투과특성)

  • Jeon, Jong-young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.193-202
    • /
    • 2009
  • In the preparation of anion charged asymmetric ultrafiltration membranes by the conventional phase inversion method, several variables could be adjusted to control membrane permeations. The anion charged materials and its original polymer have good solubility in N-methyl-2-pyrrolidone. The membranes having a hydrophilic property were less fouled the membrane prepared from the original polymer. The preparation conditions, operation conditions, and hydrophilicity of polymer have played an important role in determining the permeation properties of membranes.

  • PDF

Prepartion and Microstructure Changes with Swelling of Polyion Complex membranes Based on the K-Carrageenan

  • Jegal, Jonggeon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.61-62
    • /
    • 1994
  • In order to prepare polyion complex membranes useful for the separation of water-alcohol by pervaporation, k-carrageenan containing artionic sulfate groups in the backbone and good hydrophilicity was selected for the polyanion membrane material and poly{1,3-bis[4-butyl pyridinium] propane. bromide}, one of the polycations synthesized in our lab and containing cationic pyridinium groups., was used. The polyion complex membranes were prepared by the ion complex formation between kcarrageenan films and poly{1,3-bis[4-butyl pyridinium] propane. bromide}. On the formation process of polyion complex membranes, the way of potyion complex formation was carefully studied. In order to study the effect of the morphology on the permeation properties of the polyion complex membranes, which is one of the important factors affecting on the permeation properties of membranes but rarely studied, the microstructure behaviors of the polyion complex mem6ranes in methanol-water mixtures with different compositions Were also studied with x-ray diffractometry and polarizing microscopy.

  • PDF

Proton Exchange Membranes using Polymer Blends of PVA(Polyvinyl alcohol)/PSSA-MA(Polystyrene sulfonic acid-co-maleic acid)

  • Knag, Moon-Sung;Kim, Jong-Hak;Kim, Hyunyoo;Jongok Won;Moon, Seung-Hyeon;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.29-32
    • /
    • 2004
  • Reduction of methanol crossover in proton exchange membranes (PEMs) can be achieved by 1) the selection of materials, 2) the morphology control, and 3) the adequate crosslinking [1, 2]. The selection of polymer matrix of PEM for direct methanol fuel cells (DMFCs) is very important because the proton conductivity and methanol permeability are largely dependent upon the properties of polymers.(omitted)

  • PDF

Development and Characterization of Polymer Electrolyte Membranes Containing Polysilsesquioxane Spheres (Polysilsesquioxane 구를 함유하는 고분자 전해질 막 제조 및 특성 연구)

  • Hong Seong Uk;Cheon Hun Sang;Kim Young Baik;Park Hun Hwee
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Polymer electrolyte membranes containing polysilsesquioxane (PSQ) spheres were prepared with the blend of sulfonated poly(ether ether ketone) (SPEEK) (60%) and poly(ether sulfone) (PES) (40%). The amount of PSQ spheres was fixed at 10 wt%. The prepared polymer electrolyte membranes were characterized in terms of methanol permeability, proton conductivity, and ion exchange capacity. In all cases, both methanol permeability and proton conductivity of the polymer electrolyte membranes containing PSQ spheres were lower than the values of Nafion 117 and higher than those of SPEEK/PES (6:4) blend without PSQ spheres. The experimental results indicated that the polymer electrolyte membranes containing MS64 and VTMOS spheres were the best choice in terms of the ratio of proton conductivity to methanol permeability.

Aging Effect of Poly(vinyl alcohol) Membranes Crosslinked with Poly(acrylic acid-co-maleic acid)

  • Rhim Ji Won;Hwang Ho Sang;Kim Dae Sik;Park Ho Bum;Lee Chang Hyun;Lee Young Moo;Moon Go Young;Nam Sang Yong
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.135-140
    • /
    • 2005
  • Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(acrylic acid-co-maleic acid) (PAM) were prepared to investigate the effect of aging on their morphology by swelling them for up to 7 days. PAM was used both as a crosslinking agent and as a donor of the hydrophilic-COOH group. A $30 wt\%$ weight loss of the dry membrane was observed in the swelling test after 6 days. The surface of the membrane was dramatically changed after the swelling test. The surface roughness of the PVA/PAM membrane was increased, as determined by atomic force microscopy (AFM). The swelling loosened the polymer structure, due to the release of the unreacted polymer and the decomposition of the ester bond, thereby resulting in an increase in the free volume capable of containing water molecules. The water molecules present in the form of free water were determined by differential scanning calorimetry (DSC). The fraction of free water increased with increasing swelling time. The swelling of the membrane may provide space for the transport of protons and increase the mobility of the protonic charge carriers. The proton conductivity of the membranes measured at T= 30 and $50^{\circ}C$ was in the range of $10^{-3} to 10^{-2} S/cm$, and slightly increased with increasing swelling time and temperature.

Thermocontrol of Solute Permeation across Polymer Memberane Composed of Poly(N, N-dimethylaminoethyl methacrylate) and Its Copolymers

  • Yuk, Soon-Hon;Cho, Sun-Hang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.274-278
    • /
    • 2001
  • Polymer membranes composed of N, N-dimethylaminoethyl methaccrylate(DMAEMA) and acrylamide(AAm)(or ethyl acrylamide(EAAm) were prepared to demonstrated the thermo-control of solute permeation. Poly DMEMA has a lower critical solution temperature(LCST) at around 50$\^{C}$ in water, With the copolymerization of DMAEMA with AAm (or EAAm) a shift in the LCST to a lowere temperature was observed, probably due to the formation of hydrogen bonds between the amide and N-N-dimethylamino groups. However, the temperature-induced phase transition of poly(DMAEMA-co-EAAm) did not show a similar trend to that of poly(DMAEMA- co-AAm) in the gel state. The hydrogen bonds in poly(DMAEMA-co-EAAm) were significantly disrupted with the formation a gel network, which led to a difference in the swilling behavior of polymer gels in response to temperature. To apply these polymers to temperature-sensitive sol-ute permeation, polymer membranes were prepared. The permeation pattern of hydrocortisone, used as the model solute, was explained based on the temperature-sensitive swelling behavior of the polymer membranes.

  • PDF

Semi-interpenetrated Polymer Network of Sulfonated Poly(Styrene-Divinylbenzene-Acrylonitrile) based on PVC Film for Polymer Electrolyte Membranes

  • Yun, Sung-Hyun;Woo, Jung-Je;Seo, Seok-Jun;Park, Jung-Woo;Oh, Se-Hun;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • The sulfonated poly(styrene-divinylbenzene-acrylonitrile) (ST-DVB-AN) composite polymer electrolyte membrane based on the original PVC film was successfully synthesized to improve oxidative stability using semi-interpenetrated polymer network (semi-IPN). Weight gain ratio after copolymerization was enhanced by the DVB and AN contents, and the sulfonated membranes were characterized in terms of proton conductivity (k), ion exchange capacity (IEC), and water uptake ($W_U$). The effect of DVB content and AN addition were thoroughly investigated by comparing the resulted properties including oxidative stability. The obtained ST-DVB-AN composited semi-IPN membranes showed relatively high proton conductivity and IEC compared with Nafion117, and greatly improved oxidative stability of the synthesized membrane was obtained. This study demonstrated that a semi-interpenetrated sulfonated ST-DVB-AN composited membrane reinforced by PVC polymer network is a promising candidate as an inexpensive polymer electrolyte membrane for fuel cell applications.

Electrospun $SiO_2$ membrane using covalently cross-linked SPEEK/HPA by impregnation for high temperature PEMFC

  • Na, Heesoo;Hwang, Hyungkwon;Lee, Chanmin;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.85.2-85.2
    • /
    • 2010
  • There is widespread effort to develop polymer membranes in place of Nafion for high temperature polymer electrolyte membrane fuel cell(PEMFC). In our study, SiO2 membranes are arranged by electrospinning method. For impregnation solution, the modified sulfonated poly(ether ether ketone)(SPEEK) polymer is prepared from sulfonation, sulfochlorination, partial reduction and lithiation reaction. The modified polymer is cross-linked with 1,4-diiodobetane in NMP solvent and then blended with Heteropoly acid(HPA). The characterization of membranes is confimed by FT-IR, Thermogravimetry(TGA), water uptake test and single cell performance test for PEMFC, etc. The composite membrane shows satisfactory thermal and mechanical properties. Beside, The membrane exhibits good ion exchange capacity and high proton conductivity. As a result, The composite membrane is promising as an alternative membrane in high temperature PEMFC.

  • PDF

Son transport characteristics through random or block polymer electrolyte membranes (랜덤 및 블록 공중합에 따른 고분자 전해질막의 이온전도특성)

  • Park, Chi-Hoon;Lee, Chang-Hyun;Nam, Sang-Yong;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.57-60
    • /
    • 2004
  • Polymer electrolyte membranes have been studied widely in chloro-alkali electrolysis, cationic exchange resins, and fuel cell applications. Especially, sulfonated polyimide membranes have been suggested as a potential polymer electrolyte in PEMFC due to their excellent thermal stability and high proton conductivity.(omitted)

  • PDF