• Title/Summary/Keyword: polymer matrix composite

Search Result 492, Processing Time 0.03 seconds

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device (수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사)

  • Yang, Dong Won;Lee, Won Woo;Park, Won IL
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

Self-Sensing and Interfacial Evaluation of Ni Nanowire/Polymer Composites Using Electro-Macromechanical Technique (전기적 미세역학적 시험법을 이용한 Ni nanowire강화 고분자 복합재료의 자체 감지능 및 계면 물성평가)

  • Kim, Sung-Ju;Yoon, Dong-Jin;Hansen George;DeVries K. Lawrence;Park, Joung-Man
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.20-27
    • /
    • 2006
  • Self-sensing and interfacial evaluation of Ni nanowire/polymer composites were investigated using electro-macromechanical technique, which can be used fur a feasible sensing measurement on tensile and compressive loading/consequent unloading, temperature, and humidity. Mechanical properties of Ni nanowire with different aspect ratio and adding contents in either epoxy or silicone composites were measured indirectly using electro-pullout test under uniform and non-uniform cyclic loadings. Comparing apparent modulus with the conventional mechanical tensile modulus of Ni nanowire/epoxy composites, the trends were consistent with each other. Ni nanowire/epoxy composites showed the sensing response on humidity and temperature. Self-sensing on applied tensile and compressive loading/unloading was also responded for Ni nanowire/silicone composites via electrical contact resistivity showing the opposite trend between tension and compression. It can be due to the different electrically-interconnecting mechanisms of dispersed Ni nanowires embedded in silicone matrix.

Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material (폴리아크릴산 나트륨 염이 함침된 흡수성 고분자 복합 필름의 제조 및 특성 연구)

  • Lee, Youn Suk;Choi, Hong Yeol;Park, Insik
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.530-537
    • /
    • 2014
  • Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at $25^{\circ}C$. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

Effect of Alkali Treatment Method and Concentration of Rice Straw on the Flexural Properties and Impact Strength of Rice Straw/Recycled Polyethylene Composites (볏짚/재활용폴리에틸렌 복합재료의 굴곡특성 및 충격강도에 미치는 볏짚의 알칼리처리 방법 및 농도의 영향)

  • Lee, Ki Young;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.87-95
    • /
    • 2019
  • In the present study, the effect of alkali treatment of rice straw on the flexural properties and impact strength of rice straw/recycled polyethylene composite was investigated. Alkali treatments were performed by means of two different methods at various sodium hydroxide (NaOH) concentrations. One is static soaking method and the other is dynamic shaking method. The composites were made by compression molding technique using rice straw/recycled polyethylene pellets produced by twin-screw extrusion process. The result strongly depends on the alkali treatment method and concentration. The shaking method done with a low concentration of 1 wt% NaOH exhibits the highest flexural and impact properties whereas the soaking method done with a high concentration of 10 wt% NaOH exhibits the highest properties, being supported qualitatively by the fiber-matrix interfacial bonding of the composites. The properties between the two highest property cases above-described are comparable each other. The study suggests that such a low concentration of 1 wt% NaOH may be used for alkali treatment of natural fibers to improve the flexural and impact properties of resulting composites, rather than using high concentrations of NaOH, 10 wt% or higher. Considering of environmental concerns of alkali treatment, the shaking method is preferable to use.

Preparation and Characterization of ClO2 Self-Releasing Smart Sachet (이산화염소 자체 방출 스마트 샤쉐의 제조 및 특성 연구)

  • Junseok Lee;Hojun Shin;Sadeghi Kambiz;Jongchul Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Chlorine dioxide (ClO2) is widely used for post-harvest sterilization treatment. However, there are limitations in the retail application of ClO2 due to difficulties in handling, expensive facilities, and safety concerns. Therefore, it is necessary to develop a ClO2 technology that can be easily applied and continuously released for a long period. In this study, a series of ClO2 self-releasing sachets were developed. First, poly(ether-block-amide) (PEBAX) and polyethylene-glycol (PEG) composite films containing different ratios of citric acid (CA) were prepared using the solution casting method. The as-prepared PEBAX/PEG-CA composite films were evaluated using FT-IR, DSC, and TGA to confirm chemical structure and thermal properties. Subsequently, PEBAX/PEG-CA composite films were designed in the form of a sachet and NaClO2 powder was transferred into the sachet to achieve a ClO2 self-releasing system. The ClO2-releasing behavior of the sachet was investigated by measuring the release amount of the gas using UV-vis. The release amount of ClO2 increased with increasing CA contents owing to the existence of higher protons (trigger) in the polymer matrix. Further, ClO2 gas was released for a longer time. Therefore, the as-prepared smart sachet can be tuned according to applications and packaging sizes to serve an optimal sterilization effect.

Inherent and Interfacial Evaluation of Fibers/Epoxy Composites by Micromechanical Tests at Cryogenic Temperature (극저온에서의 미세역학시험법을 이용한 섬유/수지 복합재료의 계면 특성 평가)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Um, Moon-Gwang;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.11-16
    • /
    • 2011
  • Retention of interfacial shear strength (IFSS) of polymer composites at cryogenic temperature application is very important. In this work, single carbon tiber reinforced epoxy compositc was used to evaluate IFSS and apparent modulus under room and cryogenic temperatures. The property change of carbon and selected epoxy for particularly cryogenic temperature application were tested in tension and compression. Tensile strength and elongation of carbon fiber decreased at cryogenic temperature, whereas tensile modulus was almost same. On the other hand, epoxy matrix showed the increased tensile strength but decreased elongation. It can be due to maximum thermal contraction existing free volume in cryogenic temperature. IFSS increased up to $-10^{\circ}C$ and then decreased steadily. However, IFSS at cryogenic temperature was still similar to that at room temperature. This result is very useful to cryogenic application since selected epoxy toughness and interfacial adhesion can keep at such low temperature.

Development of High-Efficient Small Euel Cells : I. Synthesis of Organic-Inorganic Nanocomposite Electrolyte Membranes (고효율 소형 연료전지의 개발 : I.유기-무기 나노복합 전해질막의 합성)

  • Park, Yong-Il;Moon, Joo-Ho;Kim, Hye-Kyung;Kim, Suk-Hwam
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.50-55
    • /
    • 2005
  • New fast proton-conducting organic-inorganic nanocomposite membranes were successfully fabricated using polymer matrix obtained through proper oxidation of thiol ligands in (3-Mercaptopropyl) trimethoxysilane (MPTS) and hydrolysis/condensation reaction of (3-glycidoxypropyl) trimethoxysilane (GPTS). The obtained nanocomposite membranes showed relatively hirh proton-conductivity over $10^{-2}S/cm$ at $ 25^{circ}C$. The proton conductivities of the fabricated composite membranes increased up to $3.6{\times}10^{-1}$ S/cm cm by increasing temperature and relative humidity to $70^{circ}C$ and 100 $100RH\%$. The high proton conductivity of the composites Is due to the proton conducting path through the GPTS-derived 'pseudo-polyethylene oxide 'network in which sulfonic acid ligands work as a proton donor.

A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle (대용량 SiC 나노입자 강화 에폭시 복합재료의 새로운 분산방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • SiC nanoparticles were used to increase flexural properties of polymer matrix. This study was to manufacture huge concentration SiC nanoparticle/epoxy composites and to evaluate the dispersion. During mixing SiC nanoparticle and epoxy, 20 wt% SiC nanoparticle in total composites was used with both stirrer and sonication equipment together. Mixing speed and dispersion were improved with the method by using both stirrer and sonication equipment at the same time via mechanical test and FE-SEM. Based on the results, modeling of SiC nanoparticle dispersion could be established. Ultimately, unidirectional carbon fiber reinforced composites was manufactured using 20 wt% SiC nanoparticle/epoxy. Mechanical property of CFRP using dual stirrer and sonication mixing method was better than composites by single sonication mixing method.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

A Study on Deformation and Strength of High-Strength Polymer Composites Using Automobiles (자동차용 고강도 폴리머 복합재료의 변형과 강도에 관한 연구)

  • Im, Jae-Gyu;Sin, Jae-Hun;Park, Han-Ju;Shoji, T.;Takeda, H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1082-1088
    • /
    • 2001
  • Nowadays study on recycling disused plastics for automobiles was lively progressed. Rubber and talcum powder was added to retrieve degradation of physical properties caused by recycling disused polypropylene. The effect of the temperature, the fatigue load and the loading speed on DEN(double edged notch) specimen which was made by the pp-rubber composites during fracture was studied by. DEN specimen was made on PP-rubber composites through the injection molding. With increasing temperature the fracture strength was linearly decreased and the fracture energy was increased by $0^{\circ}C$ and after that decreased. In the same temperature the fracture strength during increasing the notch radius was hardly increased. The fracture behaviour at low and high loading speed was different entirely. At high loading speed plastic region was small and fracture behaviour was seen to brittle fracture tendency. With increasing fatigue load fracture energy was first rapidly decreased and subsequently steady when radius of notch tip was 2mm, but Maximum load during fracture scarcely varied. The deformation mechanism of polypropylene-rubber composites during fracture was studied by SEM fractography. A strong plastic deformation of the matrix ahead of the notch/crack occurred. The deformation seem to be enhanced by a thermal blunting of the notch/crack.