• Title/Summary/Keyword: polymer matrix composite

Search Result 492, Processing Time 0.035 seconds

Construction and Characterization of Poly (Phenylene Oxide)-Based Organic/Inorganic Composite Membranes Containing Graphene Oxide for the Development of an Anion Exchange Membrane with Extended Ion Cluster (확장된 이온 클러스터를 갖는 음이온 교환막 개발을 위한 그래핀 옥사이드를 함유한 폴리(페닐렌 옥사이드) 기반 유·무기 복합막의 제조 및 특성분석)

  • CHU, JI YOUNG;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.524-533
    • /
    • 2021
  • In this study, a series of anion conductive organic/inorganic composite membranes with excellent ionic conductivity and chemical stability were prepared by introducing graphene oxide (GO) inorganic nanofiller into the quaternized poly(phenylen oxide (Q-PPO) polymer matrix. The fabricated organic/inorganic composite membranes showed higher ionic conductivity than the pristine membrane. In particular, Q-PPO/GO 0.7 showed the highest ionic conductivity value of 143.2 mS/cm at 90℃, which was 1.56 times higher than the pristine membrane Q-PPO (91.5 mS/cm). In addition, the organic/inorganic composite membrane showed superior dimensional stability and alkaline stability compared to the pristine membrane, and the physicochemical stability was improved as the content of inorganic fillers increased. Therefore, we suggest that the as-prepared organic/inorganic composite membranes are very promising materials for anion exchange membrane applications with high conductivity and alkaline stability.

Preparation and Characterization of Polysulfone Substrate for Reinforced Composite Membrane Fuel Cell Membrane (연료전지 전해질 복합막 제조를 위한 폴리설폰계 지지체의 제조와 물성)

  • Nam, Sang-Yong;Kim, Deuk-Ju;Hwang, Rae-Young;Kim, Hyoung-Juhn
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, polysulfone which has excellent mechanical and thermal stability with low cost was used for preparing a non-conducting polymer matrix as a reinforced composite membrane for fuel cell application. The membranes were prepared by phase separation method. Polymer concentration and retention time were controlled to investigate the effects on the membrane morphology. The resaltant membranes showed all sponge-like structure independent of polymer concentration. The mechanical and thermal stability were improved with increasing polymer concentration in contrast to the membrane porosity. As a result, the membranes prepared with the retention time for 2 mins using 20 wt% of polymer solution was suitable for a fuel cell compositite membrane providing optimum properties such as approximately 80% of high porosity, 1.3 MPa of tensile strength, and less than 1% of thermal shrinkage both machine and transverse direction.

Thermoplastic Film Infusion Process for Long Fiber Reinforced Composites Using Rubber Expandable Tools (고무 치공구와 필름 함침공정을 이용한 열가소성 장섬유 복합재료 성형공정 연구)

  • Kim, Dong-Wook;An, Young-Sun;Lee, Young-Kwan;Kim, Seong-Woo;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.122-132
    • /
    • 2001
  • Thermoplastic film infusion process was investigated by using a rubber tool, which intrinsically contains a thermally-expandable characteristic and effectively compensates for the pressure loss caused by thermoplastic polymer infusion. Increasing temperature up to the melting temperature of matrix, the polymer melt subsequently infused into the dry fabric, but the pressure was successfully sustained by the rubber tool. Even with the decreased resin volume, the rubber tool produced sufficiently high elastic force for continuous resin infusion. Combining D'Arcy's law with the compressibility of rubber tool and elastic fiber bed, a film infusion model was developed to predict the resin infusion rate and pressure change as a function of time. In addition, the film infusion process without the rubber tool was viewed and analyzed by a compression process of the elastic fiber bed and viscous resin melt. The compressibility of fiber bed was experimentally measured and the multiple-step resin infusion was well described by the developed model equations.

  • PDF

Gas Permeability of Polyethylene Films Containing Zeolite Powder (제올라이트 입자를 첨가한 폴리에틸렌 필름의 기체 투과성)

  • Hwang Sun Woong;Chung Yong-Chan;Chun Byoung Chul;Lee Seong Jae
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.374-381
    • /
    • 2004
  • Gas permeability of low density polyethylene (LDPE) film containing zeolite powder for $CO_2,\;O_2$ and $N_2$ were investigated. Zeolite powders modified by cations or surfactant were compounded with LDPE to produce $20 wt\%$ masterbatch. After blending the masterbatch with LDPE, zeolite filled films were prepared by the blown film process. Finally, the composite films containing zeolite loadings of 0, 3,5, and $10 wt\%$ were produced. A gas permeability apparatus based on the variable volume principle was designed to analyze the characteristics of films. Experiments showed a general trend that gas permeabilities first decreased and then increased as the zeolite content was increased. Surfactant modified zeolite showed a better interfacial adhesion with the matrix, but the film did not show a discernible difference in gas permeability compared with the other modified films. The difference of temperature dependences in the gas permeabilities of composite films was slightly smaller than that of LDPE film.

Dielectric Properties of Semi-IPN Poly(phenylene oxide) Blend/$BaTiO_3$ Composites with Type of Cross-linker (가교체 종류에 따른 Semi-IPN Poly(phenylene oxide) 블렌드와 $BaTiO_3$ 복합재료의 유전특성)

  • Jang, Yong-Kyun;Lee, Ho-Il;Seong, Won-Mo;Park, Sang-Hoon;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • The dielectric properties of semi-IPN poly(phenylene oxide)(PPO) blend/$BaTiO_3$(BT) composites are investigated. The composites are fabricated via melt-mixing of crosslinker and peroxide in precursor PPO composite obtained by precipitating the suspension consisted of PPO, BT and toluene into methylethyl ketone, poor solvent of PPO. The permittivity of the precursor PPO composites shows higher value than that of integral-blended PPO composites by extruder and coincides with the theoretical value calculated by logarithmic rule of mixture. The blend of PPO and cross-linked triallyl isocyanurate is most effective for lowering the permittivity and loss tangent owing to the suppression of the orientation polarization of matrix. In contrast, 4,4'-(1,3-phenylene diisopropylidene) bisaniline, which has amine unit in its structure, increases the permittivity as well as loss tangent of the composite, but it has the ability to densify the matrix resin and the interfacial adhesion between the matrix and filler to improves flexural strength and modulus.

Preparation and Characterizations of C60/Polystyrene Composite Particle Containing Pristine C60 Clusters

  • Kim, Jung-Woon;Kim, Kun-Ji;Park, Soo-Yeon;Jeong, Kwang-Un;Lee, Myong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2966-2970
    • /
    • 2012
  • Fullerene/polystyrene ($C_{60}$/PS) nano particle was prepared by using emulsion polymerization. Styrene and fullerene were emulsified in aqueous media in the presence of poly(N-vinyl pyridine) as an emulsion stabilizer, and polymerization was initiated by water soluble radical initiator, potassium persulfate. The obtained nano particles have an average diameter in the range of 400-500 nm. The fullerene contents in the nano particle can be controlled up to 15 wt % by varying the feed ratio, which was confirmed by themogravimetric analysis (TGA) and elemental analysis (EA). The structure and morphologies of the $C_{60}$/PS nano particles were examined by various analytical techniques such as dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), and UV spectroscopy. Unlike conventional $C_{60}$/PS particles initiated by organic free radical initiators, in which the fullerene is copolymerized forming a covalent bond with styrene monomer, the prepared $C_{60}$/PS nano particles contain pristine fullerene as secondary particles homogeneously distributed in the polystyrene matrix.

Dispersity of CNT and GNF on the Polyurethane Matrix: Effect of Polyurethane Chemical Structure (폴리우레탄 분자구조 변화에 따른 CNT와 GNF의 분산특성 연구)

  • Im, Hyun-Gu;Kim, Hyo-Mi;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • The aim of this study is to understand the effect of structure on the dispersion of both CNT and GNF in the phase of synthesized polyurethanes matrix. Various CNT/PU and GNF/PU composite films were prepared. Polyurethane having a different hard segment was blended with both CNT and GNF. PU having HDI as hard segment showed good dispersion with both CNT and GNF because of their linear structural character and molecular kinesis while PU having aromatic ring showed poor dispersion with those due to their structural complexity. Structural effect also induced the increase of its electro conductivity. The PU/CNT composite showed a bad dispersion (because of phase separation between PU matrix and CNT) but good electro conductivity at its surface (because CNT was collected on the surface of composite film due to low density of CNT). PU/CNT and PU/GNF composite films have quite low normalized sheet resistance value compared with silver/PU nanocomposite film because the fiber type filler could have much more contact points than that of sphere shaped silver particles have.

Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites (분자동역학 전산모사와 미시역학 모델을 이용한 질화붕소 나노튜브/고분자 복합재의 역학적 물성 및 계면특성 예측)

  • Choi, Seoyeon;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • In this study, the mechanical behavior and interface properties of boron nitride nanotube-poly(methyl methacrylate) nanocomposites are predicted using the molecular dynamics simulations and the double inclusion model. After modeling nanocomposite unit cell embedding single-walled nanotube and polymer, the stiffness matrix is determined from uniaxial tension and shear tests. Through the orientation average of the transversely isotropic stiffness matrix, the effective isotropic elastic constants of randomly dispersed microstructure of nanocomposites. Compared with the double inclusion model solution with a perfect interfacial condition, it is found that the interface between boron nitride nanotube and polymer matrix is weak in nature. To characterize the interphase surrounding the nanotube, the two step domain decomposition method incorporating a linear spring model at the interface is adopted. As a result, various combinations of the interfacial compliance and the interphase elastic constants are successfully determined from an inverse analysis.

Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring (생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.749-754
    • /
    • 2022
  • High adhesion and water resistance of the skin surface are required for wearable and skin-attachable electronic patches in various medical applications. In this study, we report a stretchable electronic patch that mimics the drainable structure pattern of the hexagonal channels of frog's pads and the sucker of an octopus based on carbon-based conductive polymer composite materials. The hexagonal channel structure that mimics the pads of frogs drains water and improves adhesion through crack arresting effect, and the suction structure that mimics an octopus sucker shows high adhesion on wet surfaces. In addition, the high-adhesive electronic patch has excellent adhesion to various surfaces such as silicone wafer (max. 4.06 N/cm2) and skin replica surface (max. 1.84 N/cm2) in dry and wet conditions. The high skin-adhesive electronic patch made of a polymer composite material based on a polymer matrix and carbon particles can reliably detect electrocardiogram (ECG) in dry and humid environments. The proposed electronic patch presents potential applications for wearable and skin-attachable electronic devices for detecting various biosignals.

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells (고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo;Kim, Minkook;Lee, Dai Gil
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.243-248
    • /
    • 2016
  • Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.