• Title/Summary/Keyword: polymer lubricant

Search Result 32, Processing Time 0.02 seconds

Processability Enhancement in Melt Processing of Poly(ethylene naphthalate) (폴리(에틸렌 나프탈레이트)의 가공 특성 향상 연구)

  • Kim Hyogap;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.475-480
    • /
    • 2005
  • The lowering of melt viscosity has been investigated to achieve the processability enhancement in poly(ethylene naphthalate) (PEN) melt processing by the reactive melt blending with poly(ethylene terephthalate) (PET) and introducing lubricant as well. CaST lubricant resulted in the lowering of PEN melt viscosity but noticeable mechanical property drop was found in PEN with more than $2wt\%$ of lubricant due to the acceleration of thermal degradation by excess lubricant. PEN/PET (90/10) blend has less melt viscosity than PEN and transesterification between two polymers caused the additional viscosity depression. further viscosity lowering was found in PEN/PET blend with CaST since CaST is acting as the catalyst of transesterification as well as a lubricant in PEN/PET blend.

Effect of Lubricants on the Physical Properties of Poly(butylene terephthalnte) (폴리(부틸렌 테레프탈레이트)의 물성에 대한 윤활제의 효과)

  • Kim, Hoy-Gap;Kim, Jun-Kung;Lim, Soon-Ho;Lee, Kun-Wong;Park, Min;Kang, Ho-Jang
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • Effect of lubricants on the rheological and thermal properties of poly(butylene terephthalate) [PBT] were investigated. Calcium stearate and adipic acid glycol polyester (AhGP) were used as processing lubricants for PBT. Decrease of melt viscosity was accomplished by the addition of 1 wt% of lubricants. It was understood that melt viscosity was affected by the enhancement of chain mobility of PBT with AhGP as an internal lubricant as well as the lubricity on processing equipment developed by calcium stearate as an external lubricant. Lubricants also influenced chain scission of PBT which caused the viscosity drop as well. In addition, lubricant is resulted in the lowering of thermal stability, however, this might be minimized by adding less than 3 wt% of calcium stearate as a lubricant. As a consequence, calcium stearate as an external lubricant is more effective to control the melt viscosity of PBT with minimizing of chain scission and thermal instability in PBT.

Single-molecule Alkylation of Isoparaffin Using Peroxide Initiator for Making Synthetic Lubricant (합성 윤활유 제조를 위한 퍼옥사이드계 개시제를 이용한 이소파라핀의 단독 알킬레이션)

  • Khadka, Roshan;Lee, Sang-Woo;Kim, Yong-Woon;Ryu, Jae-Wook;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.496-501
    • /
    • 2014
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in terms of physical and chemical characteristics such as low pour point (PP), and high viscosity index (VI). This paper first reports a novel preparation route for a synthetic lubricant via alkylation of isoparaffins using a peroxide initiator without olefin. Alkylation of three kinds of isoparaffins such as i-$C_{16}$, i-$C_{18}$, and i-$C_{23}$ as well as alkylation of i-$C_{18}$ with 2-pentene using di-tert butyl peroxide initiator were conducted under various conditions to confirm alkylation reaction from isoparaffins themselves i.e; Single-molecule alkylation. Various properties of each alkylates (VI and PP) were investigated as a synthetic lubricant. Single-molecule alkylation made from i-$C_{16}$ a,nd i-$C_{18}$ showed ultra high VI (>140) and low PP (< $-30^{\circ}C$).

Effects of Melt-blending Condition and Additives on Mechanical Properties of Wood/PP Composites (용융혼합 조건과 첨가제가 목분/폴리프로필렌 복합체의 기계적 특성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.204-210
    • /
    • 2013
  • Effects of additives (lubricant and antioxidant) and melt-blending condition (temperature, time and rotor speed) on the mechanical properties of polypropylene-based wood polymer composites (WPCs) were investigated. WPCs were prepared by melt-blending followed by compression molding. To understand melt-blending procedure, torque change of the WPC melt-blend was monitored. Maleic anhydride modified PP and nanoclay were used as a compatibilizer and a reinforcing filler, respectively. UTM and izod impact tester were used to measure the mechanical properties of the WPCs and a color-difference meter was used to measure the discoloration of the WPCs according to melt-blending condition. The mechanical properties showed that the optimized melt-blending condition was $170^{\circ}C$, 15 min, and 60 rpm. The mechanical properties of the WPCs decreased with increasing lubricant and antioxidant content. The two step method, adding wood flour later separately during melt-blending, was more effective than the typical one step method for improving the mechanical properties of the WPCs.

Asphalt Sealant Containing the Waste Lubricant Oil (폐윤활유를 이용한 아스팔트 실란트)

  • Kim, Seog-Jun;Ko, Kum-Jin
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • Asphalt sealants for the crack repair of asphalt concrete road were prepared using waste lubricant oil in this work. The waste lubricant oil was compounded with asphalt(AP-5), SBS triblock copolymer, a tackifying agent(petroleum resin), and antioxidants. Cone penetration, softening point, ductility, elongation by tensile adhesion, and resilience of asphalt sealant compounds were measured. Cone penetration of asphalt sealant compounds increased with the increase of waste lubricant oil content while their softening point, ductility, and resilience decreased. By the addition of talc as an extender, softening point and resilience of asphalt sealants increased, but cone penetration, ductility, and elongation by tensile adhesion of those decreased with the proportion of talc content. The most economic asphalt sealant which could pass an ASTM specification could be manufactured by the big decrement of petroleum resin content.

Superhydrophobic Nano Patterning Techniques for Enhanced Performance of Naval Underwater Vessels (군용 수중 운동물체의 성능강화를 위한 초소수성 나노 패터닝 기술)

  • Hong, Soon-Kook;Lee, Ki-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.114-120
    • /
    • 2013
  • A superhydrophobic surface means that the contact angle between the solid surface and a water droplet is more than $150^{\circ}$. Materials with a superhydrophobic surface have a self-cleaning function because of the Lotus effect, in which water is not absorbed by the material but rolls off of it. If such a Lotus effect can be applied to the surface of underwater vessels, submarines, torpedos, and so on, enhanced vessels can be made based on this lubricant effect reducing the friction coefficient for the liquid. Because polymer composites can be easily applied in various nanotechniques, they are more advantageous than conventional materials like iron in terms of a superhydrophobic surface. Furthermore, a superhydrophobic surface bring enhanced anticorrosion and ecotechnology because no paint is needed on underwater vessels.

A Study on the Control of Microstructures of Polyalphaolefins via Cationic Polymerization (양이온 중합을 이용한 폴리알파올레핀의 미세구조 조절에 관한 연구)

  • Ko, Young Soo;Kwon, Wan-Seop;No, Myoung-Han;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.346-352
    • /
    • 2015
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in the terms of physical and chemical characteristics such as low pour point, high viscosity index (VI), and thermal and oxidation stability. Several kinds of PAOs have been synthesized by using 1-pentene, 1-hexene, 1-octene, or 1-dodecene as monomer with three kinds of aluminum-based Lewis acid catalysts via cationic polymerization. The control of the catalytic performance and physical properties of PAO such like molecular weight, kinematic viscosity, pour point, and viscosity index was done by changing polymerization parameters. The alkyl aluminum halide-based catalysts show better catalytic activity than that of the conventional $AlCl_3$ catalyst. The microstructure of PAO was investigated by means of TOF-MS (time of flightmass spectroscopy) analysis in order to elucidate the correlation between the performances of the lubricant (VI, pour point) and the molecular structure of PAO. The VI of PAO increases with increases in the carbon number of ${\alpha}$-olefin. In other words, the performances of PAO as a lubricant strongly depended on the branch length of PAO.

Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives (기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.

Degradation Characteristics of Perfluoropolyether Lubricant for Computer Hard Disk (컴퓨터 하드디스크 윤활제로 사용되는 Perfluoropolyether의 분해거동)

  • Lee, Ji-Hye;Chun, Sang-Wook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.278-282
    • /
    • 2007
  • The degradation characteristics of perfluoropolyether (PFPE) for computer hard disk drive have been investigated. Thermal degradation in PFPE started at $170\;^{\circ}C$ and it was completed at $450\;^{\circ}C$. If PFPE was contacted with wear fragment from slider made by $Al_2O_3{\cdot}TiC$, the thermal degradation was accelerated by the catalytic Lewis acid degradation. The Lewis acid degradation mainly took placed in methylene oride(fluoride) chain scission as well as methylene(fluoride) and hydroxy end chain. As a result, the degradation reaction accomplished as early as at $300\;^{\circ}C$. The photo oxidation due to UV exposure on PFPE caused the chain scission in methylene(fluoride), and end chain in PFPE without chain scission in methylene oxide(fluoride) and then the molecular weight of PFPE increased by expected secondary reactions between formed radicals in the photo oxidation.

Research on the Development of Inline Phosphate Coating Process Technology to Secure the Properties of Parts for Power Transmission Machinery (동력전달용 기계부품의 물성 확보를 위한 인라인 인산염 피막처리 공정기술개발)

  • Kim, Deok-Ho;Ku, Young-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.199-208
    • /
    • 2022
  • The steel wire or steel bar processing process applied to the manufacture of various bolts and power transmission shafts was improved by applying in-line phosphate film treatment technology. By applying a polymer lubricant for a non-reactive metal forming process and a non-reactive non-phosphorus lubricating coating agent, the film formation for each process time was comparatively analyzed and reviewed. Compared to the nine processes applied previously, the in-line phosphate film treatment technology applied with only two processes has been effectively improved in terms of reduction of treatment time, reduction of facility installation area, prevention of water pollution due to wastewater, and non-use of ozone-depleting substances. In addition, it was found that it can have an important effect on productivity improvement and price competitiveness from the simplification of quality control and process control as well as improvement of the working environment.