• Title/Summary/Keyword: polymer extrusion process

Search Result 51, Processing Time 0.024 seconds

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

INLINE NEAR INFRARED (NIR) SPECTROSCOPY FOR PROCESS CONTROL IN POLYMER EXTRUSION

  • Rohe, Thomas;Koelle, Sabine;Becker, Wolfgang;Eisenreich, Norbert;Eyerer, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1082-1082
    • /
    • 2001
  • Extrusion is one of the most important processes in polymer industry. The characterization of the polymer melt during processing will improve this process noticeably, One possibility of characterizing the actual processed polymer melt is the inline near infrared (NIR) spectroscopy, With this method several polymer properties can be observed during processing, e.g. composition, moisture ormechanical properties of the melt. For this purpose probes for transmission and reflection measurements have been developed, withstanding the high temperatures and pressures appearing during extrusion process (tested up to 300$^{\circ}C$ and 10 ㎫). For the transmission system an optical bypass was developed to eliminate disturbing spectral influences and hence increase the long term stability, which is the prerequisite for an industrial application. Measurements in transmission and reflection produced comparable results (or blending processes, where the prediction error was less than 1%. An optimum RMSEP of only 0.24% was found for preprocessed polymer blends measured in transmission on a laboratory extruder. A transflection measurement allowed for the first time the recording of relevant NIR-spectra in the screw area of an extruder. The application to a (PE+PP) blending process delivered promising results. This new measurement mode allows the observation of the ongoing processes within the screw area, which is of maximum Interest for reactive extrusion processes. Due to economic reasons the calibration transfer between different extrusion systems is also of high importance. Investigations on simulated and real-world spectra showed that a calibration transfer is possible. A new method alternatively to the well-known direct standardization procedures was developed, which is based on an automatic data pretreatment. This procedure delivers comparable results for the calibration transfer. Overall this paper presents concepts, components and algorithms for the inline near infrared (NIR) spectroscopy for polymer extrusion, which allows the use of it in a real industrial extrusion process.

  • PDF

Development and Performance Evaluation of Single screw Polymer Extruder System (단축스크류 고분자압출기 시스템의 개발 및 성능평가)

  • Kim, Jae-Yeol;Jung, Hyo-Hee;Choi, Jin-Ho
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.182-186
    • /
    • 2009
  • Extruders can be basically divided into bisk and screw type of extruders. Though plastic extruders are often used for its simplicity for water and oil transportation pumps, these days screw extruders are mostly used. Screws are used in many extrusion processes to manufacture complex and complicated shaped parts made of plastics, medicine materials, food, polymer composites, iron and ceramic powders, etc. Also, material correction of deformities is caused by flow and physicochemical reaction phenomenonand material extrusion is processed according to heat transfer. various material comes to hopper because extruder has function by blender and mixing of materials can go well before come out through dice. These change process is so complicated that process condition is decided by trial and error that process condition is underground mainly at extrusion molding process.

A Study on the Elongation of Polymer Extrusion Film (고분자압출필름의 연신에 관한 연구)

  • Choi, Man-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.660-665
    • /
    • 2014
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the elongation of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film elongation of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance(ANOVA) for maximization of the breathable film elongation influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that stretching ratio were the most influential factor on the film elongation. The best results of film elongation were obtained at lower stretching ratio.

An Analysis of a Thermo-plastic Melt Flow in the Metering Zone of a Polymer Extruder (고분자 압출기에 있어서 계량부 용융수지의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • Extrusion is one of the most important operations in the polymer-processing industry. Development of models for extrusion and computer tools offer a route to developing reliable and optimized process designs. The models are based on the analysis of physical phenomena encountered during the process. Balance equations for mass, momentum and energy are fundamental to the problem. A predictive computer model has been developed for the single screw extruders with conventional screws of different geometry. The model takes into account melting zones of the extruder and describes an operation of the extruder system, making it possible to predict mass flow rate of the polymer, pressure and velocity profiles along the extruder screw channel. The simulation parameters are the material and rheological properties of the polymer; the screw pitch, and screw speed.

A Study on Die Design Optimization for Microcatheter Extrusion Processes (마이크로 카테터 압출 공정을 위한 다이 설계 최적화에 관한 연구)

  • Jo, Seunggi;Lee, Euntaek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-41
    • /
    • 2021
  • Interventional radiology and minimally invasive surgery both require a precisely shaped microcatheter. Microcatheters are manufactured using polymer extrusion processes with a die and puller. The manufacturing parameters and die geometry greatly influence the profile of the extrudate and designing dies using a trial-and-error process is expensive and requires a lot of time. Therefore, predicting the profile of the extrudate is important for manufacturing microcatheters. This study investigates the effects of die design and geometry on the profile of the extrudate. The profiles of the extrudate are predicted using ANSYS Polyflow with respect to the different die geometries. The outer and inner diameters and wall thickness of the predicted extrudate are compared to those of a target extrudate. The die swell of melt polymer and the effect of the pulling are both examined. Optimized die designs are suggested for manufacturing the target extrudate.

Shape prediction of polymer extrusion product and Comparative Analysis of experimental results (폴리머 압출 제품의 형상예측 및 실험결과 비교분석)

  • Kim, S.H.;Na, S.H.;Yu, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.110-113
    • /
    • 2008
  • This study was performed to predict the shape of polymer extrusion product and to find the cause of defective products Experiments was performed to extrude the complex profile shape using PC/ABS composite resin with new profile die and cooling die. A finite element analysis for the Polymer Extrusion process considering the heat transfer and thermal deformation was also performed, and the result was compared with the experimental data. It is found that the predicted profile shape in F. E. M was similar to the experimental result and the thickness of extruded product was thin when the velocity of profile die outlet was slow than the velocity of production (2m/min).

  • PDF