• Title/Summary/Keyword: polymer concrete composite

Search Result 208, Processing Time 0.02 seconds

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.

Influences of porosity distributions on bending and buckling behaviour of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Mohammed A. Al-Osta;Ibrahim Alfaqih;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Salah U. Al-Dulaijan;Saeed Tahir
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.179-193
    • /
    • 2024
  • The bending and buckling effect for carbon nanotube-reinforced composite (CNTRC) beams can be evaluated by developing the theory of third shear deformation (TSDT). This study examines beams supported by viscoelastic foundations, where single-walled carbon nanotubes (SWCNTs) are dispersed and oriented within a polymer matrix. Four patterns of reinforcement are used for the CNTRC beams. The rule of mixtures is assessed for the material properties of CNTRC beams. The effective functionally graded materials (FGM) properties are studied by considering three different uneven distribution types of porosity. The damping coefficient is considered to investigate the viscosity effect on the foundation in addition to Winkler's and Pasternak's parameters. The accuracy of the current theory is inspected with multiple comparison works. Moreover, the effects of different beam parameters on the CNTRC beam bending and buckling over a viscoelastic foundation are discussed. The results demonstrated that the O-beam is the weakest type of CNTRC beam to resist buckling and flexure loads, whereas the X-beam is the strongest. Moreover, it is indicated that the presence of porosity in the beams decreases the stiffness and increases deflection. In comparison, the deflection was reduced in the presence of a viscoelastic foundation.

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Design of LB-DECK Based on Performance Evaluation (성능 평가에 근거한 LB-DECK의 설계)

  • Cho, Gyu Dae;Lho, Byeong Cheol;Cho, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This study performed research for improvement on basic concept of PBD applying suitable design method before and after LB-DECK composition. According to study, in this case, before composition, it can reduce minuteness cracks by increasing bending tensile strength utilizing polymer concrete, can expect sensuous effect, improve durability as to low permeability, and was evaluated that can reduce covering depth according as it. Also, because LB-DECK baseplate that apply the empirical design method composite is superior load resistance ability than general baseplate, safety is increased, it is expected to secure constructibility and economic performance at the same time because reinforcement arrangement method and reinforcement amount are fixed even if span effective span is increased at ultimate strength design method application.

A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints

  • Shayanfar, Javad;Bengar, Habib Akbarzadeh
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.49-74
    • /
    • 2018
  • Generally, beam-column joints are taken into account as rigid in assessment of seismic performance of reinforced concrete (RC) structures. Experimental and numerical studies have proved that ignoring nonlinearities in the joint core might crucially affect seismic performance of RC structures. On the other hand, to improve seismic behaviour of such structures, several strengthening techniques of beam-column joints have been studied and adopted in practical applications. Among these strengthening techniques, the application of FRP materials has extensively increased, especially in case of exterior RC beam-column joints. In current paper, to simulate the inelastic response in the core of RC beam-column joints strengthened by FRP sheets, a practical joint model has been proposed so that the effect of FRP sheets on characteristics of an RC joint were considered in principal tensile stress-joint rotation relations. To determine these relations, a combination of experimental results and a mechanically-based model has been developed. To verify the proposed model, it was applied to experimental specimens available in the literature. Results revealed that the model could predict inelastic response of as-built and FRP strengthened joints with reasonable precision. The simple analytic procedure and the use of experimentally computed parameters would make the model sufficiently suitable for practical applications.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

Flexural Performance of Slabs Strengthened by Fiber-Reinforced Polymer Sheet with Hydrophilic Epoxy (친수성 에폭시를 사용하여 FRP 시트로 보강된 슬래브의 휨거동 평가)

  • Ju, Hyunjin;Han, Sun-Jin;Cho, Hae-Chang;Lee, Deuck Hang;Kim, Kang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, the hydrophilic chemical grout using silanol (HCGS) was introduced to overcome the limitations of conventional epoxy resin which have been used for strengthening reinforced concrete (RC) structures. Then, flexural tests on the RC slabs strengthened by FRP sheets were conducted. Three slab specimens were tested in this study; a control specimen with no strengthening, and two specimens strengthened by a typical epoxy resin or HCGS, respectively, as a binder between the slabs and the FRP sheets. In addition, an analytical model was developed to evaluate the flexural behavior of strengthened slab members, considering the horizontal shear force at the interface between concrete slabs and FRP sheets. The analysis results obtained from the proposed model indicated that the strengthened specimens showed fully composite behavior before their flexural failure. Especially, the specimen strengthened by HCGS, which can overcome the limitations of conventional epoxy resin, showed a similar flexural performance with that strengthened by a conventional epoxy resin.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.