• Title/Summary/Keyword: polymer cement ratio

Search Result 197, Processing Time 0.02 seconds

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Strength Properties of Ultrarapid-Hardening Acrylic-Modified Concrete (아크릴 개질 초속경 폴리머 시멘트 콘크리트의 강도 특성)

  • Joo, Myung-Ki;Noh, Byung-Chul;Kim, Young-Sang;Choi, Kyu-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.945-948
    • /
    • 2008
  • The effects of polymer-cement ratio on strength properties of ultrarapid-hardening acrylic-modified concretes. As a result, the flexural and tensile strengths of ultrarapid-hardening acrylic-modified concretes increase with increasing of polymer-cement ratio. In particular, the acrylic-modified concretes with a polymer-cement ratio of 20% provide approximately 1.5 times higher flexural and tensile strengths than unmodified concretes. Such high strength development is attributed to the high flexrul and tensile strengths of arcylic polymer and the improved bond between cement hydrates and aggregates because of the addition of acrylic polymer. However, the compressive strengths of ultrarapid-hardening acrylic-modified concretes decrease with increasing of polymer-cement ratio.

  • PDF

Properties of Cemet Mortar with PVA and MC (폴리머 첨가량에 따른 모르터의 특성의 변화)

  • 이명규;윤건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.323-326
    • /
    • 1999
  • The purpose of this study is to examine the properties of cement mortar with PVA(Poy Vinyl Alcohol) and MC(Methyl Cellulos). In this paper, Water-soluble polymer cement motar using PVA and MC with water-cement ratio of 50%, polymer-cement ratio of 1.0%, 0.8% and a ratio of cement to fine aggregate (size: #5, #7) 2:3 are prepared, and tested for compressive strength, shear bond strength, flow test, penetration and dry-shirinkage.

  • PDF

Porosity of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 세공성상)

  • 형원길;송해룡;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.87-92
    • /
    • 2002
  • At present, the polymer-modified mortars are used as high-performance as well as multi-functional materials in the construction industry. The purpose of this study is to synthesize polymer to modify in cement mortars and make test samples to understand pore size distribution. This paper deals with the effect of monomer ratio on the typical properties of polymer-modified mortars using Methylmethacrylate-Butyl Acrylate(MMA/BA) latexes synthesized through emulsion polymerization. From the results, we knew that the pore volume of polymer-modified mortars using Methylmethacrylate-Butyl Acrylate latexes at bound MMA contents of 70 and 60 percent is 7.5-75cm$^3$/g and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio.

  • PDF

Bend Resistance of Polymer Cement Slurry Coated Reinforcing Bars

  • Kim, Wan-Ki;Chang, Sung-Ju;Kim, Hyun-Ki;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.42-48
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by both the adhesion strength between bar and coating materials, and the followed transformation of coating material as bars bend. Especially, tearing state or partial microscopic cracks are predicted on the inside and outside of bending angle, because tensile strength and elongation of polymer film are very different according to types of polymer dispersions in bar coating, and these damaged parts are rapidly corroded by penetration of corrosive factors. In this study, polymer cement slurry coated reinforcing bars with various polymer dispersions are prepared by following combined conditions, polymer-cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 28days. Then the specimens are tested for working life and bend resistance at bending angles $90^{\circ}$, $135^{\circ}$and $180^{\circ}$ to observe the microscopic damage effect as the bars bend. Also, epoxy-coated reinforcing bars for control experiment were used with 250$\mu$m of coating thickness. The tensile strength for polymer films is performed. From the test results, the working life of the polymer cement slurry is within 90 seconds. Among four types of polymer dispersion, polymer cement slurry coated reinforcing bar using St/BA-1 emulsion has the excellent bend resistance, which is remarkably improved than that of epoxy-coated reinforcing bar. And the bend resistance is more related to elongation than tensile strength of polymer film. Polymer cement slurry with a polymer-cement ratio of 100%, a coating thickness of $450\mu$m and one coating using St/BA emulsion is selected as a most suitable coating material for coated reinforcing bar.

  • PDF

Exploring the Flexural Bond Strength of Polymer-Cement Composition in Crack Repair Applications (균열 보수용 폴리머 시멘트 복합체의 휨접착강도에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • This research aims to assess the flexural bonding efficacy of polymer-cement composites(PCCs) in mending cracks within reinforced concrete(RC) structures. The study involved infilling PCCs into cement mortar cracks of varying dimensions, followed by evaluations of enhancements in flexural adhesion and strength. The findings indicate that the flexural bond performance of PCCs in crack repair is influenced by the cement type, polymer dispersion, and the polymer-to-binder ratio. Specifically, the use of ultra-high early strength cement combined with silica fume resulted in an up to 19.0% improvement in flexural bond strength compared to the application of ordinary Portland cement with silica fume. It was observed that the augmentation in flexural strength of cement mortar filled with PCCs was significantly more dependent on the depth of the crack rather than the width. Furthermore, PCCs not only acted as repair agents but also as reinforcement materials, enhancing the flexural strength to a certain extent. Consequently, this study concludes that PCCs formulated with ultra-high early strength cement, various polymer dispersions, silica fume, and a high polymer-to-binder ratio ranging from 60% to 80% are highly effective as maintenance materials for crack filling in practical settings.

A Study on the Bond Strength of Coated Rebar by Polymer Cement Slurry Made of EVA and Ultra High-Early Strength Cement (EVA와 초조강시멘트를 사용한 폴리머 시멘트 슬러리 도장철근의 부착강도에 관한 연구)

  • Hyung, Won-gil;Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.633-640
    • /
    • 2015
  • Polymer cement slurry (PCS) is made from organic polymer dispersion and cement has good adhesion to steel, waterproofness and acid resistance due to being of polymer films formed in cement slurry. The purpose of this study is to evaluate the bond strength of coated rebar by polymer cement slurry made of EVA and ultra high-early strength cement. The test pieces are prepared with EVA polymer dispersion and ultra high-early strength cement having four types of polymer-cement ratios, four types of coating thicknesses and four curing ages, and tested for the bond strength test. From the test results, in general, bond strength of PCS-coated rebar is better than that of uncoated rebar and epoxy-coated rebar. It is also high bond strength at curing ages of 7-day, and coating thicknesses of $75{\mu}m$ and $100{\mu}m$. The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and EVA at polymer-cement ratio of 80%, and coating thickness of $100{\mu}m$ is about 1.32 and 1.38 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is apparent that the curing age, coating thickness, type of polymer and cement are very important factors to improve the bond strength of PCS-coated rebar to cement concrete. We can have basic information that PCS-coated rebar with polymer-cement ratio of 80% or 100% and coating thickness of $100{\mu}m$ at curing age of 1-day can replace epoxy-coated rebar.

A Study on the Development of Polymer-Modified Mortars Using Styrene-Butyl Acrylate Latexes (St/BA의 모노머 비에 따른 폴리머 시멘트 모르타르 개발에 관한 연구)

  • Hyung, Won-Gil;Mun, Kyung-Ju;Song, Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.785-791
    • /
    • 2006
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars based on styrene and butyl acrylate latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. This paper deals with the effects of monomer ratio on the typical properties of the polymer-modified mortars with styrene and butyl acrylate latexes. The polymer-modified mortars using the styrene and butyl acrylate latexes polymerized with various monomer ratios are prepared with different polymer-cement ratios, and tested for the particle size of polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer-modified mortars using styrene and butyl acrylate latexes with the mix proportions of synthesis having monomer ratios of 50:50 to 60:40 for the appropriate mix proportions can be recommended for practical applications. Their basic properties are greatly affected by the polymer-cement ratio rather than the monomer ratio, and are improved over un-modified mortar.

A Study on te Water Diffusion of Polymer-Modified Mortars in Drying Process (건조과정에 있어서 폴리머 시멘트 모르터의 수분확산에 관한 연구)

  • 조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.135-143
    • /
    • 1996
  • Diffusion of water in hardened cement concrete and mortar influences on the dry shrinkage. creep. modulus of' elasticity, etc. In general, water loss through drying process in polymer-modified concrete and mortar is small compared with that of unmodified concrete and mortar due to the films formed by polymer as cement modifieder. The purpose of this study is to investigate the diffusion process of water in the polymer-modified mortars. The polymer-modified mortars using three polymer dispersions and epoxy resin are prepared with various polymer-cement ratios, and water diffusion coefficient of polymer-modified mortars according to inside water content is calculated. From the test results, the water diffusion coefficient of polymer modified mortars i s smaller than that of unmodified mortars and decreases with increasing polymer cement ratio.

Basic Properties of Polymer Cement Mortar with EVA Emulsion and Admixtures (EVA 에멀젼과 혼화재를 사용한 폴리머 시멘트 모르타르의 기초적 성질)

  • Jo, Young-Kug
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.53-60
    • /
    • 2019
  • The purpose of this study is to evaluate the degree of improvement in strengths by mixing blast-furnace slag and fly ash in polymer cement mortar(PCM). The test specimens are prepared with EVA polymer dispersion, two types of Admixtures (blast-furnace slag and fly ash), five kinds of polymer-cement ratios (0, 5, 10, 15 and 20%), and six kinds of admixtures (0, 3, 5, 10, 15 and 20%). Plain cement mortar is also made for comparison. From the test results, the flowing of PCM is greatly improved with the mixing of the admixtures, and strengths of PCM compared to ordinary cement mortar are also improved due to a decrease in water cement ratio. In addition, the strength characteristics of PCM by admixtures are greatly improved in flexural strength with fly ash compared to other strengths. It is apparent that the optimum mix proportions with polymer-cement ratio of 10% or more, admixture contents 5 to 10% of flay ash for flexural strength improvement of EVA-cement mortar are recommended in this study.