• Title/Summary/Keyword: polyimide synthesis

Search Result 77, Processing Time 0.026 seconds

Synthesis of Newel Self-Developing Photosensitive Polyimide

  • Ahn, Byung-Hyun;Lee, Dae-Woo;Lee, Jin-Kook;Hong, Seong-Soo;Lee, Gun-Dae
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2000
  • Aromatic diamine monomers containing allylic ester linkage, 1,5-bis(4-aminobenzoate)-1,2,3,4-tetrahydronaphthalene (4-DABTN) and 1,5-bis(3-amin obenzoate)-1,2,3,4-tetrahydronaphthalene (3-DABTN) were synthesized through the reaction of 1,5-dihydroxy-1,2,3,4-tetrahydronaphthalene and 4- or 3-nitrobenzoly chloride. By the reaction of these diamines with pyromellitic dianhydride (PMDA) or 4,4-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), poly(amic acid)s were obtained. The inherent viscosities of the poly(amic acid)s were between 0.55 and 1.31 dL/g. The poly(amic acid)s were converted to polyimides by chemical imidization. The thermogravimetric analysis (TGA) thermograms of these polyimides showed temperatures of 5% weight loss between 323 and 389$^{\circ}C$ in nitrogen atmosphere. The model compound ,1,5-bis (4-nitrobenzoate)-1,2,3,4-tetrahydronaphthalene (4-DNBTN), was decomposed to 4-nitrobenzoic acid and 5-(4-nitrobenzoate)-3,4-dihydronaphthalene upon addition of CF$_3$COOH.

  • PDF

Studies on Synthesis and Properties of Polyimides : IV. 6FDA-Polyimides (폴리이미드의 제조와 성질에 관한 연구 : IV. 6FDA계 폴리이미드)

  • Lee, Dong-Ho;Kim, Seung-Hwan;Yoo, Tae--Wook;Koo, Seung-Young
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.756-763
    • /
    • 1994
  • Using 2,2-Bis-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 2,2-bis-[4-(4-aminophenoxy)phenyl] hexafluoropropane and 4,4-diaminodiphenyl ether, the homopolyamic acids, copolyamic acids and blend of homopolyamic acids were prepared and converted to polyimide(PI)s by thermal imidization. In results, it has been found that a exchange reaction of polyamic acids can be occurred during thermal imidization. With measurement of mechanical properties, it was suggested that PI/PI molecular composite can be obtained by copolymerization or physical blending of homopolyamic acids.

  • PDF

Synthesis and characterization of negative-type photosensitive polyimides for TFT-LCD array

  • Kim, Hyo-Jin;Kim, Hyun-Suk;Kim, Soon-Hak;Park, Lee-Soon;Hur, Young-Hune;Lee, Yoon-Soo;Song, Gab-Deuk;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1625-1628
    • /
    • 2006
  • Two different negative-type photosensitive polyimides were synthesized and characterized for an application as an interdielectric layer in TFTLCD array. In the case of photocurable polyimides, the photosensitive moiety, 2-HHSP, was synthesized through 3 step reaction, and then was incorporated into side chains of polyimide precursor by post reaction. Optimum compositions of negative-type photocurable polyimde were also formulated. For photopolymerizable polyimides, two novel UV monomers containing imide linkages were prepared. An aqueous alkaline developable polymer matrix was synthesized by free radical copolymerization. A negative photoresist formulation was developed utilizing synthesized UV monomers containing imide linkage, photoinitiator, UV oligomer, and alkali developable polymer matrix. It was found that viaholes with good resolution, high transmittance and thermal resistance could be obtained by photolithographic process utilizing the negative-type photoresist formulations.

  • PDF

New Materials Based Lab-on-a-Chip Microreactors: New Device for Chemical Process

  • Kim, Dong-Pyo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.51-51
    • /
    • 2012
  • There is a growing interest in innovative chemical synthesis in microreactors owing to high efficiency, selectivity, and yield. In microfluidic systems, the low-volume spatial and temporal control of reactants and products offers a novel method for chemical manipulation and product generation. Glass, silicon, poly(dimethylsiloxane) (PDMS), and plastics have been used for the fabrication of miniaturized devices. However, these materials are not the best due to either of low chemical durability or expensive fabrication costs. In our group, we have recently addressed the demand for economical resistant materials that can be used for easy fabrication of microfluidic systems with reliable durability. We have suggested the use of various specialty polymers such as silicon-based inorganic polymers and fluoropolymer, flexible polyimide (PI) films that have not been used for microfluidic devices, although they have been used for other areas. And inexpensive lithography techniques were used to fabricate Lab-on-a-Chip type of microreactors with differently devised microchannel design. These microreactors were demonstrated for various synthetic reactions: liquid, liquid-gas organic chemical reactions in heterogeneous catalytic processes, syntheses of polymer and non-trivial inorganic materials. The microreactors were inert, and withstand even harsh conditions, including hydrothermal reaction. In addition, various built-in microstructures inside the microchannels, for example Pd decorated peptide nanowires, definitely enhance the uniqueness and performance of microreactors. These user-friendly Lab-on-a-Chip devices are useful alternatives for chemist and chemical engineer to conventional chemical tools such as glass.

  • PDF

New Soluble and Intrinsically Photosensitive Polyimide: Synthesis and Properties of Poly(amide-co-imide) Containing p-Phenylenediacryloyl Moiety

  • Lee, Myong-Hoon;Cheong, Yun-Sang;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.327-331
    • /
    • 2001
  • A new soluble photosensitive poly(amide-co-imide) containing p-phenylenediacryloyl moiety was synthesized and its photoreactivity was characterized. The copolymer was synthesized fromp-phenylenediacryloyl chloride, 4,4-(hexafluoroisopropylidene)diphthalic anhydride and two equivalents of bis(4-aminophenyl) ether in NMP with a subsequent chemical imidization of the resulting poly[amide$\xi$ο-(amic acid)] by acetic anhydride and pyridine. The structure and thermal properties of the polymer were characterized by spectroscopic methods and thermal analyses. The polymer was stable up to 350$\^{C}$, showed good solubility in polar aprotic solvents, and became insoluble after UV irradiation due to the[2+2] cycloaddition of phenylenediacryloyl moiety. Photoreactivity of the polymer was investigated in solution or as a film with respect to the various exposure conditions by UV/Vis spectroscopy. The photosensitivity was noticeably increased with the irradiation temperature, especially in the presense of photosensitizer. The reason for the increased sensitivity was speculated based on the flexibilization of main chain at elevated temperature. Exposure characteristic curves were obtained from the gel fraction experiments after UV irradiation. The sensitivity and contrast at 160$\^{C}$ were measured to be 293 mJ/㎠ and 1.64, respectively.

  • PDF

Residual Stress Behavior of PMDA/6FDA-PDA Copolyimide Thin Films (PMDA/6FDA-PDA 공중합 폴리이미드의 잔류응력 거동)

  • Jang, Won Bong;Chung, Hyun Soo;Joe, Yungil;Han, Haksoo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1014-1019
    • /
    • 1999
  • Copolyamic acid PMDA/6FDA-PDA(PAA) and homopolyamic acids PMDA-PDA(PAA) and 6FDA-PDA(PAA) were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride(PMDA) and 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA) as the dianhydride and 1,4-phenylenediamine (PDA) as the diamine. Residual stresses were detected in-situ during thermal imidization of the co- and homopolyimide precursors as a function of processing temperature over the range of $25{\sim}400^{\circ}C$ using thin film stress analyzer(TFSA), and morphological structures were investigated by WAXD. In comparison, the resultant residual stress of polyimide films composed of different compositions decreased with the increasing content of PMDA unit in the chain and was about 5 Mpa in compression mode for PMDA-PDA. In this study, the synthesis of random PMDA/6FDA-PDA copolyimide could be completed and compensate for the difficulty of process due to high $T_g$ of PMDA-PDA and relatively higher stress of 6FDA-PDA. It showed that we can make a low level stress copolyimied having excellent mechanical properties by incorporating appropriate rod-like rigid structure PMDA-PDA unit into 6FDA-PDA polyimide backbone which generally shows higher stress due to rotational hinges such as bulky di(trifluoromethyl). Specially, PMDA/6FDA-PDA(0.9:0.1:1.0) satisfied excellent mechanical property and low level stress as an inter layer showing low dielectric constant.

  • PDF

Synthesis of Soluble Copolyimides Using an Alicyclic Dianhydride and Their $CO_2/CH_4$ Separation Properties (지환족 다이안하이드라이드를 이용한 용해성 폴리이미드 공중합체 합성 및 메탄/이산화탄소 분리특성)

  • Park, Chae Young;Lee, Yongtaek;Kim, Jeong Hoon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, four soluble homo- and co-polyimides using 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 4,4'-diaminodiphenyl ether (ODA) monomers were synthesized to develop the gas separation membrane with good $CO_2/CH_4$ separation properties. To prepare the copolyimides, 20 mol% of three dianhydrides - (4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) - were added in DOCDA-ODA monomer mixture, respectively. All the synthesized homo- and co-polyimides were characterized by FT-IR. Their thermal properties were analyzed with differential scanning calorimeter (DSC). Dense membranes were prepared from these copolyimides to check their gas permeation properties for $CO_2$ and $CH_4$ gases using a time-lag method. The permeation testing results are as follows; DOCDA/ODA homopolymer showed 1.71 barrer of $CO_2$ permeability and 74.35 of $CO_2/CH_4$ selectivity. The three polyimide copolymers (DOCDA/6FDA-ODA, DOCDA/BPDA-ODA, DOCDA/BTDA-ODA) showed lower $CO_2/CH_4$ selectivities and higher $CO_2$ permeabilities than the homopolymer (DOCDA-ODA). DOCDA/6FDA-ODA showed twice times higher $CO_2$ permeabilities without severe $CO_2/CH_4$ selectivity loss than the DOCDA-ODA.

Synthesis and Characterization of Soluble Co-polyimides for Biogas Purification (바이오가스 정제용 용해성 폴리이미드 공중합체의 합성과 특성분석)

  • Shin, So Ra;Han, Sang Hoon;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2015
  • Co-polyimide membranes were prepared by two-step polymerization using semi-alicyclic 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) with five diamines such as 2,5-dimethyl-1,4-phenylene diamine (2M), 2,4,6-trimethyl-1,3-phenylene diamine (3M), 1,5-naphthalene diamine (NDA), 4,4-diaminodiphenyl methane (MDA), 4,4'-diaminodiphenyl ether (ODA). Synthesized co-polyimides were characterized by FT-IR, viscosity, solubility, DSC, TGA and gas permeation properties, compared with 6FDA-based co-polyimides. All co-polyimides had the intrinsic viscosity of 0.32~0.58 and excellent solubility in various solvents. DOCDA-based co-polyimides had thermal stability over $400^{\circ}C$ although those were lower than 6FDA-based co-polyimides. Gas permeabilities of the copolyimide membranes were measured for $CO_2$ and $CH_4$ at room temperature and presented the trade-off relationship.

The Change of Properties and Synthesis of Soluble Polyimides Based on 2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane (2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane을 이용한 용해성 폴리이미드의 합성과 특성변화)

  • Kim, Han-Sung;Ha, Soon-Hyo;Chun, Kyoung-Yong;Han, Hak-Soo;Joe, Yung-il
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.979-984
    • /
    • 1999
  • Aromatic soluble polyimides were synthesized from 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and various dianhydrides such as pyromelltic dianhydride(PMDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride(BTDA), and 4,4'-(hexafluoroisopropylidene)-bis(phthalic anhydride)(6FDA). Polyimides prepared by thermal imidization were insoluble in common organic solvents (acetone, MNP, DMAc, DMSO, THF, and DMF) but those prepared by chemical imidization were soluble. The difference of solubility was explained by esterification between hydroxyl group and $CH_3COO^-$ from acetic anhydride used as a dehydration agent in chemical imidization. Glass transition temperatures of polyimides by thermal method were higher than those by chemical method. All of the polyimides are stable up to $300^{\circ}C$ regardless of the sample preparation. The x-ray diffraction patterns showed that all polyimides were amorphrous.

  • PDF

Synthesis and Properties of Siloxane Containing Copolyimides (실록산이 함유된 폴리이미드의 합성과 물성)

  • Moon, Yoon-Duk;Lee, Young Moo
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.340-347
    • /
    • 1991
  • Siloxane containing copolyimide (SPI) was synthesized from 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride(BTDA), 4, 4'-methylene dianiline(MDA), 4, 4'-oxydianiline(ODA) and amine-terminated polydimethyl-siloxane(PDMS). Homopolyamic acid(HPAA) in tetrahydrofuran(THF) was reacted with PDMS to obtain siloxane containing polyamic acid(SPAA) followed by the thermal curing to manufacture SPI. SPAA and HPAA exhibited inherent viscosity value of 0.35~0.48dl/g. Glass transition temperature of SPI ranged in $258^{\circ}C{\sim}264^{\circ}C$. SPI had a lower $T_g$ than that of HPI. ODA based HPI and SPI showed slightly higher $T_g$ values, thermal stability, and water content.

  • PDF