• Title/Summary/Keyword: polygonal model

Search Result 80, Processing Time 0.025 seconds

Updating DEM for Improving Geomorphic Details (미기복 지형 표현을 위한 DEM 개선)

  • Kim, Nam-Shin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.64-72
    • /
    • 2009
  • The method to generate a digital elevation model(DEM) from contour lines causes a problem in which the low relief landform cannot be clearly presented due to the fact that it is significantly influenced by the expression of micro landform elements according to the interval of contours. Thus, this study attempts to develop a landcover burning method that recovers the micro relief landform of the DEM, which applies buffering and map algebra methods by inputting the elevation information to the landcover. In the recovering process of the micro landform, the DEM was recovered using the buffering method and elevation information through the map algebra for the landcover element for the micro landform among the primary DEM generation, making landcover map, and landcover elements. The recovering of the micro landform was applied based on stream landforms. The recovering of landforms using the buffering method was performed for the bar, which is a polygonal element, and wetland according to the properties of concave/convex through generating contours with a uniform interval in which the elevation information applied to the recovered landform. In the case of the linear elements, such as bank, road, waterway, and tributary, the landform can be recovered by using the elevation information through applying a map algebra function. Because the polygonal elements, such as stream channel, river terrace, and artificial objects (farmlands) are determined as a flat property, these are recovered by inputting constant elevation values. The results of this study were compared and analyzed for the degree of landform expression between the original DEM and the recovered DEM. In the results of the analysis, the DEM produced by using the conventional method showed few expressions in micro landform elements. The method developed in this study well described wetland, bar, landform around rivers, farmland, bank, river terrace, and artificial objects. It can be expected that the results of this study contribute to the classification and analysis of micro landforms, plain and the ecology and environment study that requires the recovering of micro landforms around streams and rivers.

  • PDF

Color Correction Using Back Propagation Neural Network in Film Scanner (필름 스캐너에서 역전파 신경회로망을 이용한 색 보정)

  • 홍승범;백중환
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.15-22
    • /
    • 2003
  • A film scanner is one of the input devices for ac acquiring high resolution and high qualify of digital images from the existing optical film. Recently the demand of film scanners have risen for experts of image printing and editing fields. However, due to the nonlinear characteristic of light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction for the scanned digital image is essential in film scanner. In this paper, neural network method is applied for the color correction to CIE L/sup *//a/sup *//b/sup */ color model data converted from RGB color model data. Also a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi is implemented by using the TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color correction rate is 79.8%, which is an improvement of 43.5% than our previous method, polygonal regression method.

  • PDF

Interactive Colision Detection for Deformable Models using Streaming AABBs

  • Zhang, Xinyu;Kim, Young-J.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02c
    • /
    • pp.306-317
    • /
    • 2007
  • We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30~100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  • PDF

Non-pneumatic Tire Design System based on Generative Adversarial Networks (적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템)

  • JuYong Seong;Hyunjun Lee;Sungchul Lee
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.34-46
    • /
    • 2023
  • The design of non-pneumatic tires, which are created by filling the space between the wheel and the tread with elastomeric compounds or polygonal spokes, has become an important research topic in the automotive and aerospace industries. In this study, a system was designed for the design of non-pneumatic tires through the implementation of a generative adversarial network. We specifically examined factors that could impact the design, including the type of non-pneumatic tire, its intended usage environment, manufacturing techniques, distinctions from pneumatic tires, and how spoke design affects load distribution. Using OpenCV, various shapes and spoke configurations were generated as images, and a GAN model was trained on the projected GANs to generate shapes and spokes for non-pneumatic tire designs. The designed non-pneumatic tires were labeled as available or not, and a Vision Transformer image classification AI model was trained on these labels for classification purposes. Evaluation of the classification model show convergence to a near-zero loss and a 99% accuracy rate confirming the generation of non-pneumatic tire designs.

  • PDF

A Study on Filling Polygonal Holes in a Polygon-based Reverse Engineering System (폴리곤 기반 역공학 시스템의 구멍메움에 관한 연구)

  • Jeon, Yong-Tae;Park, Kwang-Hyun;No, Hyung-Min;Choi, Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.140-147
    • /
    • 2004
  • In reverse engineering, the whole surfaces of the three-dimensional product are measured using 3D positional scanners. The raw triangle meshes constructed from a scanned point set are not well fitted for direct use in the downstream engineering or graphic activities. No object can be fully described by a single scan. Although multiple scans are usually taken and aligned to achieve a complete model, a set of scanned points does not entirely wrap the whole object. This is because some surfaces may be inaccessible to the scanner, so some portion of the scanned surface may be missing. This paper discusses the algorithms of a hole-filling that are crucial to refine the triangle meshes. In this paper, the holes are filled with flat triangles first by subdivision operation and then smoothed with neighboring triangles. This process continues until it converges to a certain user-defined iteration number. Examples are given and discussed to validate the system.

Development of Rendering Techniques for Particle-based Flow Simulation (입자 기반 유동 시뮬레이션의 렌더링 기술 개발)

  • Lee, Byung-Hyuk;Park, Jong-Chun;Jang, Young-Su;Kim, Sang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2009
  • Recently, various particle based simulation techniques, which solve the Navier Stokes and continuity equations, have been developed and applied to complicated engineering problems. However, although progress is being made on their visualization or rendering techniques, these are still insufficient. In this study, to render a smooth configuration for a free surface, a rendering technique was developed that included the generation of density fields from the location information for simulated particles and the creation model for a polygonal surface. The developed rendering technique was applied to the visualization of a dynamic free surface flow interacting with a structure using a particle based simulation technique.

An Evaluation of Spatial Interpolation of Statistical Information Using Dasymetric Mapping (밀도구분도 매핑을 이용한 통계정보 공간 내삽의 유효성 평가)

  • Lee, Byoung-Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.343-350
    • /
    • 2006
  • For integrating and utilizing the statistical data, which is summarized by arbitrary areal unit such as demographics, with stellite imagery or other GIS data, areal unit of both data should be accorded. Dasymetric mapping is proposed as a useful method fur disaggregating the aggregated statistical data to finer areal unit or generating surface model from object data such as polygonal area. This research evaluate the effectiveness of dasymetric mapping by 1) summarizing the yellow page information by administrative district, 2) modeling the business density using dasymetric mapping, and 3) comparing the business densities of raw data and that of spatial interpolation result.

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

Generation of 3D Building Model by Grouping of 3D Line Segments (3차원 선소의 Grouping에 의한 3차원 건물 모델 발생)

  • Kang, Yon-Uk;Woo, Dong-Min
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.40-48
    • /
    • 2006
  • This paper presents a new rooftop surface estimation method from 3D line segments. 3D rooftop surface estimation is based on the hierarchical grouping and initiated by 3D line merging for the disconnected 3D line segments. Merged 3D lines are applied to the detection of rooftop by surface estimating technique. To estimate surfaces we detect L-corner and T-corner points, and find fixed reliable junction points. The hypothesis of the possible rooftop surfaces are estimated as polygonal surfaces by these fixed junction points and building's rooftop models are generated by testing the possible surfaces in terms of assumptions of building surface properties. We carried out experiments by synthetic images on Avenches data set and the experimental results showed that we could reliably build 3D model with 3D surfaces, errors of which came up with 0.4 - 1.3 meter, 2.5 times more accurate than the elevation date from the conventional area-based stereo.

  • PDF

Gravity and Magnetic Model Study of Block Ⅵ-2, Offshore Korea (한국근해 제 6광구에 대한 중력 및 자력 모델 연구)

  • Baag Czango;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-46
    • /
    • 1993
  • Two-dimensional gravity and magnetic models were constructed for seismic profiles in Block Ⅵ-2, offshore Korea. For each seismic profile, a longer length model showing geometric configurations of all employed polygonal bodies and an expanded version of the area of interests were made. The results of this modeling study indicate 1) that the depth to the deeper basement surface appear to be shallower than indicated in the seismic sections, 2) that the Middle Miocene section (the bottom formations in the models) appears to contain significant amounts of volcanic materials, 3) that identification and/or determination of depth to the top of basement is difficult in the study area due to thick volcanic materials in the lowermost formation (Middle Miocene), and 4) that the study area is unfavorable for hydrocarbon generation and accumulation due to wide spread volcanic activities during the Middle Miocene Epoch. The maximum calculated depth to the magnetic basement in the study area is approximately $4{\cal}km$ sub-sea.

  • PDF