• Title/Summary/Keyword: polygon approximation

Search Result 35, Processing Time 0.027 seconds

Vertex selection method considering texture degradation for contour approximation (밝기 왜곡을 고려한 윤곽선 근사화용 정점 선택 방법)

  • Choi Jae Gark;Lee Si-Woong;Koh Chang-Rim;Lee Jong-Keuk
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.632-642
    • /
    • 2005
  • This paper presents a new vertex selection scheme for the polygon-based contour approximation. In the proposed method, the entire contour is partitioned into partial segments and they are approximated adaptively with variable accuracy. The approximation accuracy of each segment is controlled based on its relative significance. By computing the relative significance with the texture degradation in the approximation error region, the visual quality enhancement in the reconstructed frames can be achieved under the same amount of the contour data. For this purpose, a decision rule for $d_{max}$ is derived based on inter-region contrasts. In addition, an adaptive vertex selection method using the derived rule is proposed. Experimental results are presented to show the superiority of the proposed method over conventional methods.

Vanishing Point Detection using Reference Objects

  • Lee, Sangdon;Pant, Sudarshan
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.300-309
    • /
    • 2018
  • Detection of vanishing point is a challenging task in the situations where there are several structures with straight lines. Commonly used approaches for determining vanishing points involves finding the straight lines using edge detection and Hough transform methods. This approach often fails to perform effectively when there are a lot of straight lines found. The lines not meeting at a vanishing point are considered to be noises. In such situation, finding right candidate lines for detecting vanishing points is not a simple task. This paper proposes to use reference objects for vanishing point detection. By analyzing a reference object, it identifies the contour of the object, and derives a polygon from the contour information. Then the edges of the detected polygon are used to find the vanishing points. Our experimental results show that the proposed approach can detect vanishing points with comparable accuracy to the existing edge detection based method. Our approach can also be applied effectively even to complex situations, where too many lines generated by the existing methods make it difficult to select right lines for the vanishing points.

An Efficient Polygonal Approximation Method in the Rate-Distorion Sense (비트량-왜곡을 고려한 효율적인 다각형 근사화 기법)

  • 윤병주;고윤호;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2003
  • This paper proposes an efficient method for encoding the shape information of the object in the image. The polygonal approximation method is categorized into a loss coding method and is widely used for approximating object's shape information. The proposed method selects less number of vertices than IRM (iterated refinement method) or PVS (progressive vertex selection) when the maximum distortion is given, so reduces the bit-rates. The proposed method selects the vertices of a polygon with a simple and efficient method considering the rate-distortion sense. We construct the shape information coder, which shows the outstanding performance in the rate-distortion sense, based on the conventional progressive vertex selection method and the new vertex selection condition that we propose in this paper. Simulation results show that the proposed method has better performance than other conventional vertex selection methods in the tate-distortion sense.

A Two-Step Vertex Selection Method for Minimizing Polygonal Approximation Error (다각형 근사 오차를 최소화하기 위한 2단계 정점 선택 기법)

  • 윤병주;이훈철;고윤호;이시웅;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.114-123
    • /
    • 2003
  • The current paper proposes a new vertex selection scheme for polygon-based contour coding. To efficiently characterize the shape of an object, we incorporate the curvature information in addition to the conventional maximum distance criterion in vertex selection process. The proposed method consists of "two-step procedure." At first, contour pixels of high curvature value are selected as key vortices based on the curvature scale space (CSS), thereby dividing an overall contour into several contour-segments. Each segment is considered as an open contour whose end points are two consecutive key vortices and is processed independently. In the second step, vertices for each contour segment are selected using progressive vertex selection (PVS) method in order to obtain minimum number of vertices under the given maximum distance criterion ( $D_{max}$$^{*}$). Furthermore, the obtained vortices are adjusted using the dynamic programming (DP) technique to optimal positions in the error area sense. Experimental results are presented to compare the approximation performances of the proposed and conventional methods.imation performances of the proposed and conventional methods.

A Study on Seam Tracking and Weld Defects Detecting for Automated Pipe Welding by Using Double Vision Sensors (파이프 용접에서 다중 시각센서를 이용한 용접선 추적 및 용접결함 측정에 관한 연구)

  • 송형진;이승기;강윤희;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • At present. welding of most pipes with large diameter is carried out by the manual process. Automation of the welding process is necessary f3r the sake of consistent weld quality and improvement in productivity. In this study, two vision sensors, based on the optical triangulation, were used to obtain the information for seam tracking and detecting the weld defects. Through utilization of the vision sensors, noises were removed, images and 3D information obtained and positions of the feature points detected. The aforementioned process provided the seam and leg position data, calculated the magnitude of the gap, fillet area and leg length and judged the weld defects by ISO 5817. Noises in the images were removed by using the gradient values of the laser stripe's coordinates and various feature points were detected by using an algorithm based on the iterative polygon approximation method. Since the process time is very important, all the aforementioned processes should be conducted during welding.

Vertex Selection method using curvature information (곡률 정보를 이용한 정점 선택 기법)

  • 윤병주;이시웅;강현수;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.505-508
    • /
    • 2003
  • The current paper proposes a new vertex selection scheme for polygon-based contour ceding. To efficiently characterize the shape of an object, we incorporate the curvature information in addition to the conventional maximum distance criterion in vertex selection process. The proposed method consists of “two-step procedure.” At first, contour pixels of high curvature value are selected as key vertices based on the curvature scale space (CSS), thereby dividing an overall contour into several contour-segments. Each segment is considered as an open contour whose end points are two consecutive key vertices and is processed independently. In the second step, vertices for each contour segment are selected using progressive vertex selection (PVS) method in order to obtain minimum number of vertices under the given maximum distance criterion ( $D_{MAX}$). Experimental results are presented to compare the approximation performances of the proposed and conventional methods.s.

  • PDF

The Processing of Spatial Joins using a Bit-map Approximation (비트맵 근사 표현을 이용한 효율적인 공간 조인)

  • 홍남희;김희수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.2
    • /
    • pp.157-164
    • /
    • 2001
  • This paper studies on the processing of spatial joins. The spatial join operation is divided into filters and refinement steps in general. The processing of spatial joins can be greatly improved by the use of filters that reduce the polygons in order to find the intersecting ones. As a result, three possible sets of answers are identified: the positive one, the negative one and the inconclusive one. To identify all the interesting pairs of polygons with inconclusive answers, it is necessary to have access to the representation of polygons so that an exact geometry test can take place. We introduce a bit-map approximation technique to drastically reduce the computation required by the refinement step during refinement processing. Bit-map representation are used for the description of the internal, the external and the boundary regions of the polygon objects. The proposed scheme increases the chance of trivial acceptance and rejection of data objects, and reduces unnecessary disk accesses in query processing. It has been shown that the reference to the object data file can be cut down by as much as 60%.

  • PDF

Planar Curve Smoothing with Individual Weighted Averaging (개별적 가중치 평균을 이용한 2차원 곡선의 스무딩)

  • Lyu, Sungpil
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1194-1208
    • /
    • 2017
  • A traditional average smoothing method is designed for smoothing out noise, which, however, unintentionally results in smooth corner points on the curvature accompanied with a shrinkage of curves. In this paper, we propose a novel curve smoothing method via polygonal approximation of the input curve. The proposed method determines the smoothing weight for each point of the input curve based on the angle and approximation error between the approximated polygon and the input curve. The weight constrains a displacement of the point after smoothing not to significantly exceed the average noise error of the region. In the experiment, we observed that the resulting smoothed curve is close to the original curve since the point moves toward the average position of the noise after smoothing. As an application to digital cartography, for the same amount of smoothing, the proposed method yields a less area reduction even on small curve segments than the existing smoothing methods.

A new transform coding for contours in object-based image compression (객체지향 영상압축에 있어서 윤곽선에 대한 새로운 변환 부호화)

  • 민병석;정제창;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.1087-1099
    • /
    • 1998
  • In the content-based image coding, where each object in the scene is encoded independently, the shape, texture and motion information are very important factors. Though the contours representing the shape of an object occupy a great amount of data in proportion to the whole information, they strongly affect the subjective image quaility. Therefore, the distortion of contour coding has to be minimized as much as possible. In this paper, we propose a new method for the contour coding in which the contours are approximated to polygon and the eorror signal occurring from polygonal approximation are transformed with new basis functions. Considering the facts that confour segments occurring from polygonal approximation are smooth curves and error signals have two zero-ending points, we design new basis functions based on the Legendre polynomial and then transform the error signals with them. When applied to synthetic images such as circles, ellipses and etc., the proposed method provides, in overall, outstanding results in respect to the transform coding gain compared with DCT and DST. And in the case when applied to natural images, the proposed method gives better image quality over DCT and comparable results with DST.

  • PDF

Tessellation-independent Approximation of Normal Vectors (Tessellation에 독립적인 법선 벡터 근사에 대한 연구)

  • Ahn, Jaewoo;Kim, Woongsoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.2
    • /
    • pp.29-32
    • /
    • 1998
  • When rendering polyhedral models, normal vectors at polygon vertices are necessary for smooth shading. The most commonly used technique of approximating a vertex normal vector by averaging normal vectors of faces around the vertex yields, however, different results on different tessellations Further, continuous deformation of models may cause abrupt discontinuous changes in normal vector directions. In this paper, a variation of the above technique is proposed to avoid these problems. Specifically, it uses a weighted average of normal vectors of faces around the vertex, where the weight of a face being the angular span of the two edges incident on the vertex.

  • PDF