• Title/Summary/Keyword: polyethylene terephthalate film

Search Result 143, Processing Time 0.029 seconds

Characteristics of ITO:Ce/PET Films for Flexible Display Applications (플렉시블 디스플레이 적용을 위한 ITO:Ce/PET 박막의 물성평가)

  • Kim, Se-Il;Kang, Yong-Min;Kwon, Se-Hee;Jung, Tae-Dong;Lee, Seung-Ho;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.276-279
    • /
    • 2009
  • ITO and ITO:Ce films were deposited by DC magnetron sputtering using an ITO ($SnO_2$: 10 wt%) and $CeO_2$ doped ITO ($CeO_2$: 0.5, 3.0, 4.0 and 6.0 wt%) ceramic targets, respectively, on unheated polyethylene terephthalate (PET) substrates. The lowest resistivity $6.7{\times}10^{-4}{\Omega}cm$ was obtained from ITO:Ce film deposited using $CeO_2$ (3.0 wt%) doped ITO target. On hte other hand, ITO:Ce (0.5wt%) film has the excellent mechanical durability which was evaluated by bending test. This result was attributed to the higher binding energy of $CeO_2$ compared to $SnO_2$ and $In_2O_3$. Therefore, $CeO_2$ atoms have a small displacement caused by the bombardment of high energy particles, and it attribute to the increase in adhesion caused by decrease in internal stress. The average transmittance of the films was more than 80% in the visible region.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

Physical and Electrical Properties of Carbon Black/PVDF Composite Electrode as Ohmic Joule Heater (면상발열체용 Carbon Black/PVDF 복합전극의 물리 및 전기적 특성)

  • Doh, Chil-hoon;Jin, Bong-soo;Moon, Seong-in;Chung, Young-Dong;Jeong, Dong-yong;Bang, Young-dal
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.692-695
    • /
    • 2009
  • Ohmic joule heating electrodes were developed for the electrical heater of the floor of a room. A composite slurry of super pure black and polyvinylidene fluoride with/without the additives of multi-walled carbon nanotube or kindney stone powder was coated as a thin film on the polyethylene terephthalate film. The performances of heating electrodes were evaluated checking specific conductivity, adhesion strength and hardness. The addition of kindney stone powder increases specific resistance and hardness in a small extent. However, the addition of carbon nanotube increases specific conductivity and hardness. The properties of various compositions of ohmic joule heating electrodes were evaluated.

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

Characteristics of an electrochromic ECD (electro-chromic device) film in applications for smart windows with a 4-layer structure, a thickness of 0.5 mm (0.5 mm 이내의 두께를 갖는 4층 구조의 스마트 윈도우에 적용되는 전기변색 ECD(electro-chromic device) 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Using electrochromic devices (ECD), smart window films that can change the colors from tinted state into transparent state by applying an external voltage were manufactured. Polyethylene terephthalate (PET) film was used as a substrate instead of conventional glass, and ECD modules having a total thickness of about 50 ㎛ were manufactured by sequentially introducing an ITO/Ag/ITO electrode layer, a WO3/TIC2 organic discoloration layer, and a Nafion fluorine electrolyte layer. Through a series of sputtering, bar coating, and thermal compression processes, a large scale smart window with a horizontal and vertical length of more than 80 mm was manufactured. When DC 3.5 V was applied, the transmittance decreased from 54 % to 24 % and moreover the color change could be confirmed even with the naked eye. Reversible color change capability at low external voltage implies that external sunlight can be selectively blocked which is effective in terms of energy saving.

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with SiO2 Buffer Layer (SiO2 버퍼층을 갖는 PET 기판위에 증착한 IZTO 박막의 전기적 및 광학적 특성)

  • Park, Jong-Chan;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.578-584
    • /
    • 2017
  • $SiO_2$ buffer layer (100 nm) has been deposited on PET substrate by electron beam evaporation. And then, IZTO (In-Zn-Sn-O) thin film has been deposited on $SiO_2$/PET substrate with different RF power of 30 to 60 W, working pressure, 1 to 7 mTorr, by RF magnetron sputtering. Structural, electrical and optical properties of IZTO thin film have been analyzed with various RF powers and working pressures. IZTO thin film deposited on the process condition of 50 W and 3 mTorr exhibited the best characteristics, where figure of merit was $4.53{\times}10^{-3}{\Omega}^{-1}$, resistivity, $4.42{\times}10^{-4}{\Omega}-cm$, sheet resistance, $27.63{\Omega}/sq.$, average transmittance (400-800 nm), 81.24%. As a result of AFM, all the IZTO thin film has no defects such as pinhole and crack, and RMS surface roughness was 1.147 nm. Due to these characteristics, IZTO thin film deposited on $SiO_2$/PET structure was found to be a very compatible material that can be applied to the next generation flexible display device.

Effect of Packaging Methods on Postharvest Quality of $Tah$ $Tasai$ Chinese Cabbage ($Brassica$ $campestris$ var. $narinosa$) Baby Leaf Vegetable (어린잎 채소 다채의 포장방법이 품질에 미치는 영향)

  • Lee, Jung-Soo;Lee, Youn-Suk
    • Food Science and Preservation
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The effect of the packing methods for enhancing the shelf life and improving the postharvest quality of the $tah$ $tasai$ Chinese cabbage baby leaf vegetable was studied during storage. Fresh baby leaf vegetables were packed in four commercial packaging types: (1) a non-perforated bag with a 0.03-mm oriented polypropylene (OPP) film; (2) a perforated bag with 1.0-mm-diameter holes on an OPP film; (3) a 0.40-mm polyethylene terephthalate (PET) container with a hinged lid; and (4) an expanded polystyrene (EPS) tray wrapped with a 0.02-mm polyvinyl chloride (PVC) film. The quality parameters, such as the weight loss, moisture content change, color difference, and appearance of the baby leaf vegetables were investigated. The baby leaf vegetables in the PET container and in the non-perforated OPP film bag showed relatively low weight loss, high moisture content, and good external appearance compared to those in the EPS tray and in the perforated OPP film bag during limited storage periods, at $16^{\circ}C$. The PET container also protected the baby leaf vegetables from physical damage. The study results will enable the selection of a better packaging system for extending the freshness and increasing the market ability of baby leaf vegetables.

Effect of Water Temperature and Packing Type on Quality of Fresh-cut Pak-choi (세척 청경채의 선도 유지에 대한 세척수 온도와 포장 형태의 영향)

  • Kim, Byeong-Sam;Chang, Min-Sun;Park, Shin-Young;Cha, Hwan-Soo;Kwon, Ki-Hyun;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Quality attributes of fresh-cut pak-choi (Brassica campestris var. chinensis) as affected by hydrocooling and packing were investigated in terms of weight loss, respiration, vitamin C content, total chlorophyll content, microbial load and sensory properties during storage at 4 and $10^{\circ}C$. Fresh pak-choi was trimmed and washed with cold water $(1^{\circ}C)$ as well as tap water $(6^{\circ}C)$ for 30 sec 3 times and then packaged in PP (polypropylene) film bag and PETE (polyethylene terephthalate) bay, and stored for 9 days at 4 and $10^{\circ}C$. Weight loss was decreased by washing and packing generally. Respiration rate was increased slowly over the storage at $4^{\circ}C$. Vitamin C content and total chlorophyll contents of pak-choi packaged within PETE bay decreased gradually during storage. Hydrocooling and packing within PETE bay treatments resulted in approximately 1-2 log CFU/g reduction of microbial load.

Effect of Water Temperature and Packing Type on Quality of Fresh-cut Chicory (세척수 온도와 포장 형태에 따른 신선편이 치커리의 품질 변화)

  • Chang, Min-Sun;Kim, Gun-Hee;Kim, Byeong-Sam
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.279-287
    • /
    • 2007
  • Quality attributes of fresh-cut chicory (Clchorium intybus L.var. foliosum) treated with hydrocooling and packing type were investigated in terms of weight loss, respiration, vitamin C content, microbial load and sensory properties during storage at $4^{\circ}C\;and\;10^{\circ}C$. Fresh chicory was trimmed and washed 3 times with cold water $(1^{\circ}C,\;5^{\circ}C)$ and tap water $(10^{\circ}C)$ for 30 sec and then packaged in polypropylene (PP) film bag and polyethylene terephthalate (PETE) tray, and stored for 9 days at $4^{\circ}C\;and\;10^{\circ}C$. Weight loss was decreased by washing and packing generally. Respiration rate was increased slowly in the storage at $4^{\circ}C$. Vitamin C content of chicory packaged within PETE tray were decreased gradually during storage at $4^{\circ}C$. Hydrocooling and packing within PETE tray treatments resulted in approximately 1-2 log CFU/g reduction of microbial load.