• Title/Summary/Keyword: polyethylene terephthalate fiber

Search Result 65, Processing Time 0.025 seconds

Behaviour of recycled aggregate concrete beam-column connections in presence of PET fibers at the joint region

  • Marthong, Comingstarful
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.669-679
    • /
    • 2018
  • In this paper the behavior of reinforced concrete (RC) beam-column connections under cyclic loading was analyzed. The specimens, manufactured in a reduced-scale were made of (a) recycled aggregate concrete (RAC) by replacing 30% of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) and (b) RAC incorporating Polyethylene terephthalate (PET) fiber i.e., PET fiber-reinforced concrete (PFRC) at the joint region. PET fiber (aspect ratio=25) of 0.5% by weight of concrete used in the PFRC mix was obtained by hand cutting of post-consumer PET bottles. A reference specimen was also prepared using 100% of NCA and subjected to similar loading sequence. Comparing the results the structural behavior under cyclic loading of RAC specimens are quite similar to the reference specimens. Damage tolerance, load resisting capacity, stiffness degradation, ductility, and energy dissipation of the RAC specimens enhanced due to addition of PET fibers at the joint region. PFRC specimens also presented a lower damage indices and higher principal tensile stresses as compared to the RAC specimens. The results obtained gave experimental evidence on the feasibility of RAC for structural use. Using PET fibers as a discrete reinforcement is recommended for improving the seismic performance of RAC specimens.

Experimental Study on Reinforcement Effects of PET Sheet (PET 섬유의 보강효과에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.163-169
    • /
    • 2017
  • Although the strength of polyethylene terephthalate (PET) fibers which are generally used to make plastic bottles is low, the deformability of PET fibers is substantially high. Due to these material characteristics, a PET fiber can be used as a reliable strengthening material to resist a large deformation caused by earthquake and research pertinent to application of PET fibers is actively conducted in Japan. Therefore, in this study, experiments have been carried out to investigate the lateral confinement effect of PET fibers and to assess the applicability of PET fibers to construction fields by comparing the strengthening effect of PET fibers to that of carbon and glass fiber sheets. For this purpose, concrete cylinder specimens with parameters of different concrete strength and strengthening layers of carbon fiber sheets, glass fiber sheets, and PET fibers were respectively tested using two sets of cylinders for each parameter. As a result, specimens strengthened with carbon fiber sheets and glass fiber sheets failed due to sudden decrease of strength as with existing studies. However, specimens with PET fibers reached their maximum strength and then failed after gradual decrease strength without failure of PET fibers. In addition, although the strength of specimens with PET fibers did not significantly increase in comparison with that of specimens with carbon fiber sheets and glass fiber sheets, specimens with PET fibers indicated considerable deformability. Thus, a PET fiber can be considered as an effective strengthening material.

A Study on Dyeability of Polyester Fabrics Grafted with Methacrylic Acid (MA 그라프트 폴리에스테르직물의 염색성에 관한 연구)

  • Baik, Chun-Eui;Cho, Seung-Sik;Song, Hwa-Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.6
    • /
    • pp.946-954
    • /
    • 1995
  • The purpose of this study is to modify the hydrophobic property and dyeability of polyethylene terephthalate fiber. Methacrylic acid (2nA) was graftpolymerized with benzoyl peroxide (BPO) as initiator onto polyethylene terephthalate fabrics. The results were as follow; 1. Graft-polymerization exhibited maximum graft ratio at a temperature of 100"C. 2. The polymer was gradually grafted in great amount to the surface of MA-g-PET as graft ration increase; with the cross-section examination of MA-g-PET, it was discovered that graft-polymeriation had also taken place inside the textile core. 3. Dyes absorption of basic dyes and disperse dyes was improved as craft ratio increase; with resistance to laundering, the former showed grade 3-4 and the latter showed grade 5.de 5.

  • PDF

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

Structural Behavior of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 구조거동)

  • Kim, Sung Bae;Kim, Hyun Young;Yi, Na Hyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.543-550
    • /
    • 2009
  • This study was performed to prove the possibility of utilizing short plastic fibers made for recycled polyethylene terephthalate (RPET) as a structural material. In order to verify the capacity of RPET fiber, it was compared with polypropylene (PP) fiber, most widely used short synthetic fiber, for fiber volume fraction of 0%, 0.5%, 0.75%, and 1.0%. To measure material properties such as compressive strength, split tensile strength, appropriate tests were performed. Also, to measure the strength and ductility capacities of reinforced concrete (RC) member casted with RPET fiber added concrete, flexural test was performed on RC beams. The results showed that compressive strength decreased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. Split cylinder tensile strength of RPET fiber reinforced concrete increased slightly as fiber volume fraction increased. For structural member performance, ultimate strength, relative ductility and energy absorption of RPET added RC beam are significantly larger than OPC specimen. Also, the results showed that ultimate flexural strength and ductility both increased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. The study results indicate that RPET fiber can be used as an effective additional reinforcing material in concrete members.

Manufacture of Soluble Micro-fiber and Low Melting Polymer for Interior Synthetic Leather (인테리어용 인조가죽을 위한 용출형 극세사와 저온 융착사의 제조)

  • Ahn, Young-Moo
    • Korean Journal of Human Ecology
    • /
    • v.12 no.4
    • /
    • pp.529-537
    • /
    • 2003
  • This study was conducted to manufacture the soluble micro-fiber and to synthesize low melting polymer for the interior fabric not to use the polyurethane resin causing some problems. Low melting polyester for weft yarn was introduced by adding 30-40 mol% ratio of isophthalic acid to a main chain of polyethylene terephthalate to decrease the melting temperature up to heat setting temperature. Micro-fiber for warp yarn consisted of both soluble and insoluble components with multi-layered structure. When the soluble micro-fiber was treated by alkaline hydrolysis with 3-5% concentration of NaOH, it showed the turning point at 28% weight loss since soluble polyester was hydrolyzed approximate five times faster than regular polyester.

  • PDF

Bond Performance of Recycled PET Bottle Fiber Reinforced Concrete (폐 PET병을 이용한 콘크리트 보강 섬유의 부착특성)

  • Won, Jong-Pil;Park, Chan-Gi;Lee, Su-Jin;Kim, Jung-Hoon;Kim, Hwang-Hee;Lee, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.373-376
    • /
    • 2006
  • The purpose of this study was manufactured and evaluated the bond performance of recycled polyethylene terephthalate(PET) bottle fiber reinforced concrete. Four deformed recycled PET bottle fibers were manufactured and pullout test was conducted in accordance with the JCI-SF 8. Test parameters included four different type of fiber geometry and two types of mortar specimens. According to bond test results, it was found that embossing type recycled PET bottle fiber was significant improving the pullout load and interface toughness.

  • PDF

Development of Synthetic Sizing Agent Using Recycling Polyethylene Terephthalate and its Sizing Efficiency (Part 2) - Sizing efficiency of modified PET - (재활용 PET를 활용한 합성 사이즈제 개발 및 종이의 내수성 부여에 관한 연구 (제2보) - 개질 PET의 내수특성 평가 -)

  • Park, Jae-Seok;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.95-101
    • /
    • 2010
  • For the development of higher-sizing performance of paper, a sizing agent using recycled PET was synthesised. Polyester resin was extracted from wasted PET by subcritical hydrolysis and finally modified to synthetic sizing agent by mixing water-disperse PET with triphenyl phosphite(TPP). The modified PET was considered as an internal sizing agent in different wet-end papermaking conditions. The optimum condition in sizing efficiency was obtained in initial pH of 6.5 in case of rosin+alum system, and 7.5 in case of rosin+alum+PET system, respectively, and in addition amount of PET 3%. The sizing efficiency was also closely related according to the fiber properties of wet-end slurry, such as virgin fibres from UKP and recycled fibres from KOCC. The application of modified PET was good in strength improvement of paper, specially in tensile strength.