• 제목/요약/키워드: polyethylene terephthalate (PET)

검색결과 337건 처리시간 0.028초

In Silico Analysis and Biochemical Characterization of Streptomyces PET Hydrolase with Bis(2-Hydroxyethyl) Terephthalate Biodegradation Activity

  • Gobinda Thapa;So-Ra Han;Prakash Paudel;Min-Su Kim;Young-Soo Hong;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권9호
    • /
    • pp.1836-1847
    • /
    • 2024
  • Polyethylene terephthalate (PET), one of the most widely used plastics in the world, causes serious environmental problems. Recently, scientists have been focused on the enzymatic degradation of PET, an environmentally friendly method that offers an attractive approach to the degradation and recycling of PET. In this work, PET hydrolase from Streptomyces sp. W2061 was biochemically characterized, and the biodegradation of PET was performed using the PET model substrate bis (2-hydroxyethyl terephthalate) (BHET). PET hydrolase has an isoelectric point of 5.84, and a molecular mass of about 50.31 kDa. The optimum pH and temperature were 7.0 and 40℃, respectively. LC-MS analysis of the enzymatic products showed that the PET hydrolase successfully degraded a single ester bond of BHET, leading to the formation of MHET. Furthermore, in silico characterization of the PET hydrolase protein sequence and its predicted three-dimensional structure was designed and compared with the well-characterized IsPETase from Ideonella sakaiensis. The structural analysis showed that the (Gly-x1-Ser-x2-Gly) serine hydrolase motif and the catalytic triad (Ser, Asp, and His) were conserved in all sequences. In addition, we integrated molecular dynamics (MD) simulations to analyze the variation in the structural stability of the PET hydrolase in the absence and presence of BHET. These simulations showed the formation of a stable complex between the PET hydrolase and BHET. To the best of our knowledge, this is the first study on Streptomyces sp. W2061 to investigate the BHET degradation activity of PET hydrolase, which has potential application in the biodegradation of plastics in the environment.

저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발 (Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process)

  • 문재정;박옥경;김남훈
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.282-287
    • /
    • 2020
  • 본 연구에서는 저 융점 폴리에틸렌 테레프탈레이트(PET) 섬유(Low melting PET fiber: LMF)가 복합화된 PET 시트의 고밀도화 공정을 통해 고강도 PET 시트를 제조하였다. 복합화된 LMF는 열처리 과정에서 용융되어 개개의 PET 섬유를 연결해 섬유간의 계면결합력을 향상시켰다. 또한 PET시트의 고밀도화는 거대기공밀도를 감소시키고 중첩된 PET 네트워크간의 결합력을 향상시켜 결과적으로 압축 전 LMF-PET 시트와 비교하여 연신율은 유지하면서 약 410% 향상된 인장강도를 보여주었다. 또한 강화된 결합력은 PET 섬유 네트워크의 수축을 방지하여 우수한 치수안정성을 나타내었다.

Fumed silica가 충진된 Polyethylene terephthalate(PET) Nano복합재의 연구 (Polyethylene terephthalate (PET) Nanocomposites filled with Fumed Silicas by Melt Compounding)

  • Hahm, Wan-Gyu;Im, Seung-Soon
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.309-312
    • /
    • 2002
  • The polymer nanocomposites are attracting considerable attention on account of the characteristic properties of nanoparticles have extremely large surface area per a unit mass. Recentry, mica-type silicates like montmorillonite have received a good deal of attention as effective nano-reinforcemen(1), but actually some critical problems such as the difficulties of exfoliation and surface modification, the weak heat-resistance of modifier, and inferior processability due to the increase in melt viscosity have restricted the mass production and various applications of the nanocoposite. (omitted)

  • PDF

MA 그라프트 폴리에스테르직물의 염색성에 관한 연구 (A Study on Dyeability of Polyester Fabrics Grafted with Methacrylic Acid)

  • 백천의;조승식;송화순
    • 한국의류학회지
    • /
    • 제19권6호
    • /
    • pp.946-954
    • /
    • 1995
  • The purpose of this study is to modify the hydrophobic property and dyeability of polyethylene terephthalate fiber. Methacrylic acid (2nA) was graftpolymerized with benzoyl peroxide (BPO) as initiator onto polyethylene terephthalate fabrics. The results were as follow; 1. Graft-polymerization exhibited maximum graft ratio at a temperature of 100"C. 2. The polymer was gradually grafted in great amount to the surface of MA-g-PET as graft ration increase; with the cross-section examination of MA-g-PET, it was discovered that graft-polymeriation had also taken place inside the textile core. 3. Dyes absorption of basic dyes and disperse dyes was improved as craft ratio increase; with resistance to laundering, the former showed grade 3-4 and the latter showed grade 5.de 5.

  • PDF

RF Bias Effect of ITO Thin Films Reactively Sputtered on PET Substrates at Room Temperature

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권3호
    • /
    • pp.122-125
    • /
    • 2004
  • ITO films were deposited on polyethylene terephthalate substrate by a dc reactive magnetron sputtering using rf bias without substrate heater and post-deposition thermal treatment. The dependency of rf substrate bias on plasma sputter processing was investigated to control energetic particles and improve ITO film properties. The substrate was applied negative rf bias voltage from 0 to -80 V. The composition of indium, tin, and oxygen atoms is strongly depended on the rf substrate bias. Oxygen deficiency is the highest at rf bias of -20 V. The electrical and optical properties of ITO films also are dominated obviously by negative rf bias.

재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 균열저항특성 (Crack Resistance Properties of Fiber Reinforced Concrete with Recycled PET Fiber)

  • 김성배;김현영;이나현;김장호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.545-546
    • /
    • 2009
  • 본 연구에서는 재활용된 polyethylene terephthalate (RPET)로 만든 플라스틱 단섬유의 구조재료로써의 사용 가능성을 조사하였다. 실험은 균열제어 성능을 확인하기 위해 구속건조수축균열 시험을 평가하였다. 성능을 검증하기 위해서 가장 널리 상용되는 합성섬유인 poly propylene (PP) 섬유와 비교하였으며, 섬유의 혼입률을 0%, 0.5%, 0.75%, 1.0%로 변화시켜 혼입률에 따른 영향을 함께 검토하였다.

  • PDF

폴리머 재료에서의 광학적 물성의 온도의존성 (Temperature Dependence of Optical Properties on Polymer Materials)

  • 정승묵;신영곤;이상훈;송국현;김영진;이낙규;나경환
    • 반도체디스플레이기술학회지
    • /
    • 제3권4호
    • /
    • pp.5-11
    • /
    • 2004
  • Optical properties of PET(Polyethylene terephthalate), PC(Polycarbonate), Acrylic resin and PE(Polyethylene) sheets were studied as a function of heat treating temperature of $60^{\circ}C$ to $150^{\circ}C$. By the heat treatment, optical properties of transmittance, absorbance, and reflectance showed a considerable change with different ways according to the materials. To understand the reason of optical property change, X-ray diffraction and surface morphology were also investigated. It was observed that small crystallite and pore that can cause scattering largely affect the transmittance. It was suggested that change of surface chemical bond induce the reflectance variation.

  • PDF

Effects of Ar-Plasma Treatment in Alkali-Decomposition of Poly(ethylene terephthalate)

  • Seo, Eun-Deock
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.387-392
    • /
    • 2003
  • The ablation effects of Ar-plasma treatment and alkali-decomposition behavior in NaOH solution of polyethylene terephthalate (PET) film were investigated. The modifications were evaluated by analysis of atomic force microscopy topographical changes, and by the measurement of decomposition yield in conjunction with heats of formation and electron densities of acyl carbon calculated by Parameterization Method 3 method. It has shown that the alkali-decomposition is hampered by plasma treatment and its decomposition yield is closely related with plasma treatment conditions such as exposure time to plasma. Plasma-treated PET films exhibited lower decomposition yield, compared to that of virgin PET. Increasing plasma exposure time contributes positively to decrease the decomposition yield. It has also shown that the topography of PET surface was affected by the base-promoted hydrolysis as well as Ar-plasma treatments. These behaviors are attributed to the decreased nucleophilicity of acyl carbon damaged by the ablation of Ar-plasma.

PET 나노섬유 강화 PEI 막의 제조 및 특성화 연구, 그에 따른 유기용매 나노여과막 가능성 검증 (Preparation and Characterization Study of PET Nanofiber-reinforced PEI Membrane, Investigation of the Application of Organic Solvent Nanofiltration Membrane)

  • 홍성배;임광섭;권동준;남상용
    • 접착 및 계면
    • /
    • 제24권1호
    • /
    • pp.17-25
    • /
    • 2023
  • 본 연구는 투명 폐 Polyethylene Terephthalate (PET)병을 재활용하여 지지체를 제조 후에 Polyetherimide (PEI)를 이용하여 친환경적인 유기용매나노여과막 (Organic Solvent Nanofiltration)에 이용하고자 하였다. 제조된 복합막은 먼저, PET 지지체는 전기방사를 통해 제조를 하였으며 이후 내용매성이 우수한 PEI를 이용하여 지지체 위에 캐스팅하였고 비용매 유도상분리(Non-solvent Induced Phase Separation, NIPS) 방법을 이용하여 유기용매나노여과막을 제조하였다. 먼저 막제조에 앞서 제조된 PET 지지체는 모폴로지 분석을 통해 섬유의 직경과 인장강도를 파악하였으며 유기용매나노여과막의 최적 지지체 조건을 확인하였다. 이후 제조된 PET/PEI 복합막은 PEI의 농도에 따른 유기용매나노여과막으로서의 성능을 파악하기 위하여 에탄올에 분자량 697 g/mol을 가지는 Congo red의 제거율을 확인하였으며 최종으로 Congo red의 제거율이 90%이상의 제거율을 가지는 최적의 PET/PEI 복합막을 확인하였다.