• 제목/요약/키워드: polyethylene terephthalate(PET)

검색결과 337건 처리시간 0.032초

Pentanediol unit로 개질된 PET의 결정화 거동 (Crystallization Behavior of PET Modified by Pentanediol units)

  • 이선희;심미자;김상욱
    • 한국재료학회지
    • /
    • 제2권2호
    • /
    • pp.101-109
    • /
    • 1992
  • PET(polyethylene terephthalate)는 섬유 및 다방면의 응용분야에 사용되는 상업용 고분자로 알려져 있다. 본 논문에서는 PET를 개질하기 위해 pentanediol의 이성질체인 1,5-pentanediol(1, 5-PD)과 neopentyl glycol(NPG)를 제3 monomer로 도입시켰다. NPG를 도입시킨 경우에는 결정화 속도가 감소하고, 1,5-PD로 개질된 PET는 1,5-PD가 약 10mo1% 첨가될 때가지 결정화 속도가 서서히 증가하였다. 이러한 결과는 NPG의 branch된 methyl기가 고분자 사슬에 표면으로 확산되면서 결정화하는 것을 방해하기 때문이다.

  • PDF

Transient Behaviors of ZnO Thin Films on a Transparent, Flexible Polyethylene Terephthalate Substrate

  • Kim, Yongjun;Lee, Hoseok;Yi, Junsin;Noh, Jinseo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.179.1-179.1
    • /
    • 2015
  • Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates were investigated in the very thin thickness range of 20 to 120 nm. A very unusual transition phenomenon, in which electrical resistance increases with an increase in film thickness, was observed. From structural and compositional analyses, this transition behavior was explained to arise from metallic Zn agglomerates dispersed in non-crystalline Zn-O matrix. It was unveiled that film thickness more than 80 nm is required for the development of hexagonal crystal structure of ZnO. ZnO films on PET substrates exhibited high optical transmittance and good mechanical flexibility in the thickness range. The results of this study would provide a valuable guideline for the design of ZnO thin films on organic substrates for practical applications.

  • PDF

미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성 (Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process)

  • 신승용;임성한;주병윤;오수익
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

실리콘 고무와 내열접착 향상을 위한 Polyethylene Terephthalate 섬유 접착층의 제조 및 특성 (Treatment and Characterization of Polyethylene Terephthalate Fibers with Silicone Rubber Adhesive for Heat-Resistant Adhesion)

  • 김지효;이상오;이재웅
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.107-117
    • /
    • 2019
  • In case of pure rubber materials, the initial quality of the rubber materials would be excellent, however, the durability against external impact might be poor. In order to overcome the relatively low durability, textile cord could be employed with silicone rubber. We have studied the improvement of heat-resistant adhesion properties of silicone adhesives between silicone rubber and PET fibers by applying various conditions including dip solution recipe. The silicone rubber used was a platinum catalyst curing type and platinum catalyst type silicone adhesive was used as an adhesive to obtain an optimum adhesive force. Furthermore, the bonding mechanism between silicone and PET fiber was established.

PET 섬유를 사용한 친환경 난연지 제조방법에 대한 연구 (Manufacture of Environmentally-friendly Flame-retardant Paper with Polyethylene Terephthalate (PET) Short Cut Fiber)

  • 김지섭;이명구
    • 펄프종이기술
    • /
    • 제44권5호
    • /
    • pp.14-20
    • /
    • 2012
  • In this paper, the flame-retardant wall paper was successfully prepared with recycled polyethylene terephthalate (PET) short cut fiber with flame-retardant property and wood pulp using polyvinyl alcohol (PVA) as binder followed by treatment of non-halogen flame retardant. Physical properties such as formation index, tensile strength, elongation, and burst strength increased as defibrillation increased except tear strength. Bulk increased but formation index, tensile strength, elongation and burst strength decreased along with addition of PET short cut fiber. It was also found that tear strength rose significantly up to 30% of PET short cut fiber and then declined (fell) rapidly. As addition level of PVA increased tensile strength, elongation and burst strength increased, but tear strength decreased slightly. Addition of 20% of PET short cut fiber and 13% of PVA provided the flame-retardant wall paper with both improved flameproofing and physical properties.

Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible displays

  • Choi, Kwang-Hyuk;Cho, Sung-Woo;Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.605-608
    • /
    • 2008
  • The preparation and characteristics of flexible indium tin oxide electrodes grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible optoelectronics In spite of low a PET substrate temperature, we can obtain the flexible electrode with a sheet resistance of 47.4 ohm/square and an average optical transmittance of 83.46 % in the green region of 500~550 nm wavelength. Both x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis results showed that all flexible ITO electrodes grown on the PET substrate were an amorphous structure with a very smooth and featureless surface, regardless of the Ar/$O_2$ flow ratio due to the low substrate temperature, which is maintained by a cooling drum. In addition, the flexible ITO electrode grown on the Ar ion beam treated PET substrates showed more stable mechanical properties than the flexible ITO electrode grown on the wet cleaned PET substrate, due to an increased adhesion between the flexible ITO and the PET substrates.

  • PDF

Behaviour of recycled aggregate concrete beam-column connections in presence of PET fibers at the joint region

  • Marthong, Comingstarful
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.669-679
    • /
    • 2018
  • In this paper the behavior of reinforced concrete (RC) beam-column connections under cyclic loading was analyzed. The specimens, manufactured in a reduced-scale were made of (a) recycled aggregate concrete (RAC) by replacing 30% of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) and (b) RAC incorporating Polyethylene terephthalate (PET) fiber i.e., PET fiber-reinforced concrete (PFRC) at the joint region. PET fiber (aspect ratio=25) of 0.5% by weight of concrete used in the PFRC mix was obtained by hand cutting of post-consumer PET bottles. A reference specimen was also prepared using 100% of NCA and subjected to similar loading sequence. Comparing the results the structural behavior under cyclic loading of RAC specimens are quite similar to the reference specimens. Damage tolerance, load resisting capacity, stiffness degradation, ductility, and energy dissipation of the RAC specimens enhanced due to addition of PET fibers at the joint region. PFRC specimens also presented a lower damage indices and higher principal tensile stresses as compared to the RAC specimens. The results obtained gave experimental evidence on the feasibility of RAC for structural use. Using PET fibers as a discrete reinforcement is recommended for improving the seismic performance of RAC specimens.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

COMBUSTION KINETICS OF POLYETHYLENE TEREPHTHALATE

  • Oh, Sea-Cheon;Lee, Dong-Gyu;Kwak, Hyun;Bae, Seong-Youl
    • Environmental Engineering Research
    • /
    • 제11권5호
    • /
    • pp.250-256
    • /
    • 2006
  • The combustion kinetics of poly(ethylene terephthalate) (PET) was studied by the dynamic model which accounts for the thermal decomposition of polymer at any time. The kinetic analysis was performed by a conventional nonisothermal thermogravimetric (TG) technique at several heating rates between 10 and 40 K/min in air atmosphere. The thermal decomposition of PET in air atmosphere was found to be a complex process composed of at least two stages for which kinetic values can be calculated. The combustion kinetic analysis of PET gave apparent activation energy for the first stage of $257.3{\sim}269.9\;kJ/mol$, with a value of $140.5{\sim}213.8\;kJ/mol$ for the second stage. To verify the effectiveness of the kinetic analysis method used in this work, the kinetic analysis results were compared with those of various analytical methods. The kinetic parameters were also compared with values of the pyrolysis of PET in nitrogen atmosphere.

PET 섬유의 보강효과에 관한 실험적 연구 (Experimental Study on Reinforcement Effects of PET Sheet)

  • 하상수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권5호
    • /
    • pp.163-169
    • /
    • 2017
  • 비닐용기 등에 주로 사용되는 PET 섬유는 강도는 아주 작은 반면, 변형성능에는 아주 우수하기 때문에 지진 발생시 구조물의 대변형에 효과적으로 저항할 수 있는 보강재료로 사용가능하며, 일본에서는 이미 PET 섬유를 이용한 연구를 진행하고 있는 실정이다. 따라서 본 연구에서는 PET(polyethylene terephthalate) 섬유의 횡구속 효과를 파악하고, PET 섬유의 보강효과와 기존에 사용해왔던 탄소섬유시트 및 유리섬유시트의 보강효과를 비교함으로써 PET 섬유의 현장적용성 여부를 파악하기 위한 것이다. 이를 위해 무근 콘크리트 공시체에 탄소섬유시트와 유리섬유시트 및 PET 섬유 등으로 구분하고 각각에 대해 콘크리트 강도와 보강겹수를 달리하여 실험체 별로 각각 2개씩 동일하게 제작하여 실험을 실시하였다. 실험결과, 탄소섬유시트 및 유리섬유시트로 보강된 실험체는 기존연구결과들과 마찬가지로 시트가 파단된 후 급격한 내력저하로 최종파괴 되었다. 그러나 PET로 보강한 실험체들은 PET 섬유가 파단되지 않고 최대 강도 이후 급격한 내력저하 없이 서서히 감소되면서 최종파괴 되었다. 또한, 탄소섬유시트 및 유리섬유시트로 보강한 실험체에 비해 강도증진 효과는 크지 않았으나, 연성측면에서는 매우 우수하게 나타나 향후 보강재료로 사용할 수 있을 것으로 판단된다.