• Title/Summary/Keyword: polyethylene glycol %28PEG%29

Search Result 2, Processing Time 0.014 seconds

Intestinal Permeabilities of Polyethylene Glycols (330-1122D) in the In Situ Perfused Rat (장내 관류된 동물에서 Polyethylene Glycols에 의한 장내 투과율 (Intestinal Permeability)측정에 관한 연구)

  • 김미혜
    • Journal of Nutrition and Health
    • /
    • v.29 no.2
    • /
    • pp.153-158
    • /
    • 1996
  • Polyethylene glycols(PEGs)are hydrophilic molecules that have been used to characterize intestinal permeability via the paracellular pathway. Using a mixture of PEGs(400, 600 and 1000), containing oligomers in the molecular weight range 330 to 1122 D, the molecular weight permeability dependence in the jejunum of the rat small intestine was examined, employing an in situ recirculation perfusion technique. Individual oligomers were determined by HPLC with refractive detection. In the range studied, a distinct molecular weight cut-off was not apparent. Corrected for the length of jejunum used in the study, over the molecular weight range 330 to 1122D, the apparent permeability(Papp) of PEG ranged from 4.92$\pm$0.02$\times$10-5cm/sec(mean$\pm$SEM, n=5) to 0.28$\times$10-5cm/sec. Also, it was observed that the apparent permeability was inversely proportional to approximately MW2. The results in this study suggest that molecular weight is an important factor in determining the intestinal permeability.

  • PDF

Effects of ${\kappa}-Carrageenan$-Based Film Packaging on Moisture Loss and Lipid Oxidation of Mackerel Mince (${\kappa}-Carrageenan$ 필름을 사용하여 포장한 고등어육의 수분 손실 및 지방 산화)

  • Hwang, Keum-Taek;Rhim, Jong-Whan;Park, Hyun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.390-393
    • /
    • 1997
  • ${\kappa}-Carrageenan-based$ film prepared by mixing 2% ${\kappa}-carrageenan$, 0.1% KCl, 0.75% polyethylene glycol, and 0.75% glycerol was examined to be used as a potential packaging material for mackerel mince for preventing moisture loss and lipid oxidation. Mackerel mince patties were vacuum-packaged with the film and stored at $20^{\circ}C,\;10^{\circ}C,\;0^{\circ}C,\;and\;-15^{\circ}C$; nonpackaged patties were also stored at $0^{\circ}C$. Weight reduction, peroxide value (PV), and thiobarbituric acid (TBA) value were measured during storage. The packaged or nonpackaged samples stored at $20^{\circ}C,\;10^{\circ}C,\;and\;0^{\circ}C$ showed a 60% weight reduction between 2 and 15 days of storage, while the weight reduction of the samples stored at $-15^{\circ}C$ was about 3% after 25 days. The nonpackaged samples stored at $0^{\circ}C$ showed a steady increase in lipid oxidation with the PV reaching 23 mequivalent peroxide (PO)/㎏ on day 20 and with the TBA value at 0.4 mole malonaldehyde (MA)/g on day 5. The PV and TBA values of the samples vacuum-packaged with the carrageenan-based film were below 2 mequivalent PO/㎏ and below 0.1 mole MA/g, respectively, regardless of storage temperature throughout the storage of 28 days.

  • PDF