• Title/Summary/Keyword: polyelectrolytes

Search Result 95, Processing Time 0.023 seconds

Electrostatic Self-assembled Multilayer Fabrication of Polyelectrolytes (고분자전해질을 이용한 자기조립 다층박막의 제조)

  • 이택승;양창덕;안흥기;나종호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.1-3
    • /
    • 2002
  • 고분자전해질의 교대흡착을 통하여 고분자 박막을 제조하는 기법은 고분자 자기조립 (polymer self-assembly)의 새롭고 다양한 분야에 응용될 수 있는 방법이다. 전하를 갖는 여러 종류의 고분자가 이 방법에 사용되어질 수 있으며, 여기에는 일반적으로 알려진 고분자전해질뿐만 아니라, 복잡한 구조의 기능단을 갖는 고분자전해질, DNA와 단백질과 같은 생체고분자 등이 포함되어 있다. (중략)

  • PDF

Interfacial Engineering of Graphenes for Energy and Biosensor Devices

  • Park, H.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.12-12
    • /
    • 2011
  • Interfacing functional materials with electrical or biological systems is of prime importance in terms of expanding applicative fields and obtaining high performances of devices. Herein, I report the functionalization of graphenes through supramolecular assembly and their electrochemical applications into fuel cells, supercapacitors, and biosensor devices. The solution processable nanohybridization of graphenes by functional materials such as ionic liquids, polyelectrolytes, block copolymers, and biomaterials, described herein would pave the way to obtain high performances of flexible energy and biosensor devices as well as to overcome the existing technology barriers.

  • PDF

Retention, Drainage, Formation, and Fracture Toughness Depending on Retention System, Molecular Weights of Polyelectrolytes and Dosage Sequences (보류시스템, 고분자 전해질 분자량과 약품투입순서에 따른 보류, 탈수, 지합, 파괴인성의 변화)

  • Chae, Hee-Jae;Kim, Mun-Sung;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • In order to produce high quality paper at the lowest cost in high speed, typically various polyelectrolytes as retention aids were used. Retention systems such as single polymer system, dual polymer system, and microparticle system were used. The objective of this study was to analyze the changes of retention, drainage, formation and fracture toughness depending on types of retention system, molecular weight of C-PAM and dosage sequences of agents. When single polymer system was applied, retention was increased with poor formation and drainage. When common microparticle system(C-PAM/bentonite) was used, high molecular weight PAM gave high retention and fast drainage, but poor formation. When the microparticle system with reverse dosage sequence(bentonite/C-PAM) was used, low molecular weight PAM gave high retention, fast drainage and good formation. When various retention agents were applied, fracture toughness was increased than that of blank. When using high molecular weight PAM and consequently causing excessive flocculation, fracture toughness was decreased.

Preparation of Water-Resistant Humidity Sensor Using Photocurable Reactive Oligomers Containing Ionene Unit and Their Properties (이온넨 단위를 가지는 광경화성 반응성 올리고머를 이용한 내수성 습도센서의 제조 및 감습 특성)

  • Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • New polyelectrolytes derived from ionene-containing photocurable reactive oligomer (PIDM) were prepared for water-resistant humidity-sensitive membranes. The mixture of PIDM, hexamethylene dimethacrylate (HDM), pentaerythritol triacrylate dimer (SP1013), and photoinitiator was simultaneously coated on the sensor electrode with photoinitiated radical polymerization. The pretreatment of the substrates with vinyl-type silane-coupling reagent was performed for improving the water durability and stability of the sensors at high temperature and humidity. When the resistance dependences on the relative humidity of the crosslinked PIDMs were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was required for the humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, response time, water durability, and high temperature/humidity stabilities were measured and evaluated as a humidity-sensing membrane.

Removal of textile dyes in wastewater using polyelectrolytes containing tetrazole groups

  • Caldera-Villalobos, Martin;Pelaez-Cid, Alejandra-Alicia;Martins-Alho, Miriam-Amelia;Herrera-Gonzalez, Ana-Maria
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2394-2402
    • /
    • 2018
  • Textile dyes are some of the pollutants which have received the most attention because of the large volume of wastewater generated by the textile industry. Removal by means of adsorption is one of the most versatile alternatives to treat these effluents. Even though different adsorbents such as activated carbons and mineral materials have been proposed, polymeric adsorbents are a viable alternative. This work reports for the first time the use of polyelectrolyte PTZ and macroelectrolyte MTZ containing tetrazole groups as adsorbents useful in the textile dyes removal present in aqueous solutions and wastewater. Because of the anionic character of the tetrazole group, MTZ exhibits selective adsorption capabilities for cationic dyes of up to $156.25mg{\cdot}g^{-1}$. The kinetic study of the process of adsorption shows that PTZ and MTZ fit a pseudo second-order model. MTZ also shows utility as a flocculant agent in the treatment of wastewater containing dyes Indigo Blue and Reactive Black. The results showed that PTZ and MTZ may be used in the treatment of wastewater in a process of coagulation-flocculation followed by the treatment by adsorption. This two-stage treatment removed up to 95% of the dye present in the wastewater. As well as removing the dyes, the values for COD, suspended solids, pH, and color of the wastewater decreased, thus significantly improving its quality.

Preparation and characterization of nanosized hollow silica in the presence of aluminum isopropoxide

  • Nguyen, Ngoc Anh Thu;Kim, Hyun-Ik;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.421-427
    • /
    • 2016
  • Nanosized hollow silica was prepared by $St{\ddot{o}}ber$ method in the presence of aluminum isopropoxide. The mixture of polyelectrolytes such as poly(sodium 4-styrene sulfonate)(PSS) and polyacrylic acid(PAA) were used as templates. Tetraethylorthosilicate(TEOS) and aluminum isopropoxide were used as precursors for silica and alumina, respectively. The function of aluminum isopropoxide is to increase the porosity of silica shell. The characterizations of hollow silica were examined by TEM(transmission electron microscopy), TGA(thermogravimetric analysis), BET(Brunauer Emmett Teller), Energy-dispersive X-ray spectroscopy(EDS), and FT-IR spectrum. It was found that the shell thickness of hollow silica was around 8 nm and the core diameter was around 20 nm by TEM.

Application of the Novel Test Machine, Retention Drainage Analyzer(RDA), for Wet-End Analysis of Papermaking Process (I) (제지공정의 WET-END 분석을 위한 새로운 감압 탈수 초지설비(RDA)의 활용(제1보) - RDA를 활용한 종이 균일성 예측 -)

  • 우이균;류정용;김용환;송봉근;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • In order to simulate the actual wet-end process in papermachine, RDA, a novel handsheet former, was used and following results were obtained. While the addition of polyelectrolytes gives significant effect on fiber flocculation, increase of stock consistency influenced on the formation of RDA sheets greatly. In particular, the consistency increase from 0.3 % to 0.4% abruptly increased floe size of RDA sheet and it results in severe deterioration of paper strength. Stock consistency, therefore, should be regarded as the most important factor in the formation simulation with RDA and should be controlled as the first sequence of tuning the operating conditions of RDA to simulate correctly the target machine paper's formation.

Property of Poly(amic acid) Precursor Solution (Poly(amic acid) 전구체 용액의 성질)

  • Ahn, Young Moo
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.43-48
    • /
    • 1996
  • Condensation type aromatic polyimides were synthesized in DMF solvent by two step low temperature solution polymerization. By employing monomers as p-phenylene 3diamine and 3 kinds of dianhydrides such as pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride and trimellitic anhydride chloride, poly(amic acid) precursors were sythesized. These reactions were exothermic and very fast. When synthesized poly(amic acid)s were dissolved in DMF solvent and stood long time, the polymers were hydrolyzed and their degradation reactions were accelerated as the solution concentrations were dilute. Also, when water is added there-to the degradation rates were accelerated 8faster. In addition, in a very dilute solution state, the reduction viscosity is greatly increased to show properties of conventional polyelectrolytes. This also showed properties sensitive to the concentration change as carboxyl groups per unit segment are increased.

  • PDF

Nanopatterning of Proteins Using Composite Nanomold and Self-Assembled Polyelectrolyte Multilayers

  • Kim, Sung-Kyu;Kim, Byung-Gee;Lee, Ji-Hye;Lee, Chang-Soo
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.232-239
    • /
    • 2009
  • This paper describes the simple nanopatterning of proteins on polyelectrolyte surfaces using microcontact printing with a nanopatternable, hydrophilic composite nanomold. The composite nanomold was easily fabricated by blending two UV-curable materials composed of Norland Optical Adhesives(NOA) 63 and poly(ethylene glycol) dimethacrylate(PEG-DMA). NOA 63 provided stable nanostructure formation and PEG-DMA induced high wettability of proteins in the nanomold. Using the composite mold and functionalized surface with polyelectrolytes, the fluorescent, isothiocyanate-tagged, bovine serum albumin(FITC-BSA) was successfully patterned with 8 nm height and 500 nm width. To confirm the feasibility of the protein assay on a nanoscale, a glycoprotein-lectin assay was successfully demonstrated as a model system. As expected, the lectins correctly recognized the nano-patterned glycoproteins such as chicken ovalbumin. The simple preparation of composite nanomold and functionalized surface with a universal platform can be applied to various biomolecules such as DNA, proteins, carbohydrates, and other biomolecules on a nanoscale.

Effects of Surface Geometry on Polyelectrolyte Adsorption

  • Park, Young-G.;Kim, Key-Seek;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2000
  • For the adsorption of polyelectrolyte at the surface of polyacrylamide gel particle, preferential adsorption of the large polyelectrolyte such as DNA is governed by the surface area of an adsorbent. The adsorption equilibrium constant can be varied by surface geometry of porous polymer, and it can be described as a function of ionic strength and surface area. Physical parameters affecting the adsorption were estimated using the theoretical governing equation of polyelectrolyte which electrophoretically moved along the column, and geometrical surface area was estimated by Waldman-Mayer's physical model. The separation of polyelectrolytes was studied using the physical parameters estimated by ionic strength and surface geometry.