• Title/Summary/Keyword: polycrystalline

Search Result 1,287, Processing Time 0.032 seconds

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere

  • Chang, Sung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • The luminescence properties of polycrystalline ZnO annealed in reducing ambience ($H_2/N_2$) have been studied. An effective quenching of green luminescence with enhanced UV emission from polycrystalline ZnO is observed for the reduced ZnO. The variations of the UV and green luminescence band upon reduction treatment are investigated as a function of temperature in the range between 20 and 300 K. Upon annealing treatment in reducing ambience, the optical quality of polycrystalline ZnO is improved. The UV to green intensity ratio of sintered ZnO approaches close to zero (~0.05). However, this ratio reaches more than 13 at room temperature for polycrystalline ZnO annealed at $800^{\circ}C$ in reducing ambience. Furthermore, the full width at half maximum (FWHM) of the UV band of polycrystalline ZnO is reduced compared to unannealed polycrystalline ZnO. Electron paramagnetic resonance (EPR) measurements clearly show that there is no direct correlation between the green luminescence and oxygen vacancy concentration for reduced polycrystalline ZnO.

Silicidation of the Co/Ti Bilayer on the Doped Polycrystalline Si Substrate (다결정 Si기판 위에서의 Co/Ti 이중층의 실리사이드화)

  • Kwon, Young-Jae;Lee, Jong-Mu;Bae, Dae-Lok;Kang, Ho-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.579-583
    • /
    • 1998
  • Silicide layer structures, agglomeration of silicide layers, and dopant redistributions for the Co/Ti bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The $CoSi_2$ phase transition temperature is higher and agglomeration of the silicide layer occurs more severely for the Co/Ti bilayer on the doped polycrystalline Si substrate than on the single Si substrate. Also, dopant loss by outdiffusion is much more significant on the doped polycrystalline Si substrate than on the single Si substrate. All of these differences are attributed to the grain boundary diffusion and heavier doping concentration in the polycrystalline Si. The layer structure after silicidation annealing of Co/ Tildoped - polycrystalline Si is polycrystalline CoSi,/polycrystalline Si, while that of Co/TiI( 100) Si is Co- Ti- Si/epi- CoSi,/(lOO) Si.

  • PDF

A Study on Chemical Vapor Deposition of Polycrystalline Silicon. (다결정 실리콘의 화학증착에 대한 연구)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.13-19
    • /
    • 1982
  • Polycrystalline silicon layers have been deposited by a chemical vapor deposition technique using $SiCl_4$, $H_2$ gas mixture on single crystal silicon substrates. In this work, the effects of depostion temperature and total flow rate on the deposition rate of polycrystalline silicon are investigated. From the experimental results it was found that the formation reaction of polycrystalline silicon was limited by surface reaction and mass transfer controlled as the deposition temperature was increased. The morphology of polycrystalline silicon layer changed from a fine structure to a coarse one as the deposition temperature was increased.

  • PDF

Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Device and Its Applications (MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템과 적용)

  • Jung Hyang Nam;Choi Jae Hwan;Chung Hee Taeg;Lee June Key
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.170-174
    • /
    • 2005
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. Effects of the fraction of the potential site($f_p$) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are investigated. For this research, polysilicon is applied to this system as the polycrystalline thin-films.

Silicidation and Thermal Stability of the So/refreactory Metal Bilayer on the Doped Polycrystalline Si Substrate (Co/내열금속/다결정 Si 구조의 실리사이드화와 열적안정성)

  • 권영재;이종무
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.604-610
    • /
    • 1999
  • Silicide layer structures and morphology degradation of the surface and interface of the silicide layers for he Co/refractory metal bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The CoSi-CoSi2 phase transition temperature is lower an morphology degradation of the silcide layer occurs more severely for the Co/refractorymetal bilayer on the P-doped polycrystalline Si substrate than on the single Si substrate. Also the final layer structure and the morphology of the films after silicidation annealing was found to depend strongly upon the interlayer metal. The layer structure after silicidation annealing of Co/Hf/doped-poly Si is Co-Hf alloy/polycrystalline CoSi2/poly Si substrate while that of Co/Nb is polycrystalline CoSi2/NbSi2/polycrystalline CoSi2/poly Si.

  • PDF

Fabrication of Polycrystalline SiC Doubly Clamped Beam Micro Resonators and Their Characteristics (양단이 고정된 빔형 다결정 3C-SiC 마이크로 공진기의 제작과 그 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.303-306
    • /
    • 2009
  • This paper describes the characteristics of polycrystalline 3C-SiC doubly clamped beam micro resonators. The polycrystalline 3C-SiC doubly clamped beam resonators with $60{\sim}100{\mu}m$ lengths, $10{\mu}m$ width, and $0.4{\mu}m$ thickness were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonant frequency was measured by a laser vibrometer in vacuum at room temperature. For the $60{\sim}100{\mu}m$ long cantilevers, the fundamental frequency appeared at $373.4{\sim}908.1\;kHz$. The resonant frequencies of doubly clamped beam with lengths were higher than simulated results because of tensile stress. Therefore, polycrystalline 3C-SiC doubly clamped beam micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

Fabrication and characterization of polycrystalline 3C-SiC mocro-resonators (다결정 3C-SiC 마이크로 공진기 제작과 그 특성)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.250-250
    • /
    • 2008
  • This paper describes the resonant characteristics of polycrystalline SiC micro resonators. The $1{\mu}m$ thick polycrystalline 3C-SiC cantilevers with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at room temperature. For the 100 ~ $40{\mu}m$ long cantilevers, the fundamental frequency appeared at 147.2 kHz - 856.3 kHz. The $100{\mu}m$ and $80{\mu}m$ long cantilevers have second mode resonant frequency at 857.5 kHz and 1.14 MHz. Therefore, polycrystalline 3C-SiC micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

Fabrication and characteristics of polycrystalline SiC micro resonators (다결정 SiC 마이크로 공진기의 제작과 그 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.425-428
    • /
    • 2008
  • This paper describes the resonant characteristics of polycrystalline SiC micro resonators. The $1{\mu}m$ thick polycrystalline 3C-SiC cantilevers with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at room temperature. For the $100{\sim}40{\mu}m$ long cantilevers, the fundamental frequency appeared at $147.2kHz{\sim}856.3kHz$. The $100{\mu}m$ and $80{\mu}m$ long cantilevers have second mode resonant frequency at 857.5.kHz and 1.14.MHz, respectively. Therefore, polycrystalline 3C-SiC resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

Characteristics of poly 3C-SiC doubkly clamped beam micro resonators (양단이 고정된 빔형 다결정 3C-SiC 마이크로 공진기의 특성)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.217-217
    • /
    • 2009
  • This paper describes the characteristics of polycrystalline 3C-SiC doubly clamped beam micro resonators. The polycrystalline 3C-SiC doubly clamped beam resonators with 60 ~ 100 ${\mu}m$ lengths, $10\;{\mu}m$ width, and $0.4\;{\mu}m$ thickness were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonant frequency was measured by a laser vibrometer in vacuum at room temperature. For the 60 ~ 100 ${\mu}m$ long cantilevers, the fundamental frequency appeared at 373.4 ~ 908.1 kHz. The resonant frequencies of doubly clamped beam with lengths were higher than simulated results because of tensile stress. Therefore, polycrystalline 3C-SiC doubly clamped beam micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

Analysis of elastic-plastic large deformation for polycrystalline solids (다결정체의 탄소성 대변형해석)

  • Kim, Young-Suk;Kim, Jung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1291-1297
    • /
    • 1997
  • Elastic-plastic finite element(FE) simulation was performed for polycrystalline solids subjected to plane strain tensile loading. Using Asaro's double slip crystal plasticity model, the polycrystalline solids were modeled by assigning different initial slip directions to each grain. From the FE calculations, the microscopic deformation characteristics of polycrystalline solids were analyzed. Moreover, the effect of grain size and grain boundaries on the deformation characteristics were clarified.