• Title/Summary/Keyword: polychlorinated biphenyl

Search Result 71, Processing Time 0.01 seconds

Biodegradation of Polychlorinated Biphenyls (PCBs) within Insulating Oil by Pseudomonas sp. P2 (Pseudomonas sp. P2에 의한 절연류 내의 Polychlorinated Biphenyls (PCBs)의 분해)

  • Kim, Jung-Ho;Choi, Sang-Ki;Kim, Young-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 1996
  • Polychlorinated Biphenyls(PCBs)의 생물학적 처리가 시도되고 있으며, PCBs를 분해할 수 있는 미생물을 이용할 수 있다. 따라서 본 연구에서는 폐기된 절연유의 생물학적 처리를 위하여 PCBs를 분해하는 균을 분해하였으며, 분해된 균을 이용하여 절연유 내의 Polychlorinated Biphenyls(PCBs) 분해를 회분식 실험에서 연구하였다. 대구의 신천으로부터 유일한 탄소원으로 Biphenyl을 포함하고 있는 고체배지에서 PCBs를 분해할 수 있는 Pseudomonas sp. P2 균주를 분해하였다. PCBs의 용해도를 높이기 위해 사용된 유화제 alkyl aryl ethoxylated phosphate가 200 mg/L에서는 Pseudomonas sp. P2 균주의 성장에 영향을 미치지 않았다. 1000 mg/L의 Biphenyl과 PCBs에 Pseudomonas sp. P2를 접종하여 160시간 배양후에 Biphenyl과 PCBs의 분해가 각각 97.5%, 58.0%였다. Biphenyl 1000 mg/L에서 최대성장율($\mu_{max}$)은 0.34 $day^{-1}$, 0.26 였다. 따라서 염소가 결합되지 않은 Biphenyl는 염소가 결합된 PCBs보다 분해가 빠르게 진행되었다. 또한 Pseudomonas sp. P2는 Biphenyl과 PCBs의 분해로 부터 유도된 황색의 분해대사산물을 확인하였다. 본 연구에서는 Pseudomonas sp. P2 균주가 절연유 내의 PCBs를 분해할 수 있다는 것을 확인하였다.

  • PDF

Glucuronidation of Hydroxylated Polychlorinated Biphenyl by Channel Catfish Liver (챠넬메기 간에서 Hydroxylated Polychlorinated Biphenyl의 Glucuronidation)

  • Shin, Hea-Soon
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.195-200
    • /
    • 2008
  • Hydroxylated polychlorinated biphenyl (OH-PCBs)는 PCB의 CYP-dependent oxidation의 대사물로서 잠재적 독성이 강하고 지질친화성을 가지며 생물군에 지속적인 축적성을 나타낸다. OH-PCBs의 해독화 효능을 조사하기 위하여 channel catfish 간에서 glucuronidation을 통한 해독작용 가능성을 평가하고 biphenyl 구조에 다양한 염소치환의 구조적 차이점에 따른 영향을 비교 분석하여 보았다. Kinetic parameters에서 $K_m$$V_{max}$$192{\sim}871{\mu}M$, $869{\sim}1774$ pmo1/min/mg으로써 4'-OH-PCB35와 4'-OH-PCB69이 가장 높은 속도의 glucuronidation을 나타냈으며, 구조적 차이점에서 phenolic group에 한 개의 염소치환이 존재할 경우보다 두 개의 염소치환이 존재할 경우에 OH-PCBs(p<0.001)의 glucuronidation에 대한 $V_{max}$를 현저하게 낮추는 결과를 보였다.

Translocation of Polychlorinated Biphenyls in Carrot-Soil Systems (Polychlorinated Biphenyl의 작물-토양간 흡수 이행성)

  • Lim, Do-Hyung;Lim, Da-Som;Keum, Young-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.203-210
    • /
    • 2016
  • Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, found in the many environments. PCBs exerts various toxicological effects, including endocrine-disrupting activity. Most researches with these toxicants performed with soil matrix with mixtures of congeners, namely Aroclor, while the biological activities have been tested with animals. However, studies with pure congeners are limited. In this study, 5 congeners were synthesized and their fates (bioaccumulation, degradation, kinetics) were studied in carrot-soil system. The soil half-lives of biphenyl, PCB-1, PCB-3, PCB-77, and PCB-126 were 20.2, 16.0, 11.6, 46.5, 198.0 days, respectively. In general, the longer half-lives were observed with the higher hydrophoicity of PCBs. Times, required for maxium accumulation of PCBs in carrot (Tmax) were 10-20 days for most congeners and the concentrations were 0.4-2.6 mg/kg. The concentrations of PCBs in carrot were kept as constant after Tmax, except PCB-126. The concentration ratio between carrot and soil after 90 days of treatment were 1.7, 8.1, 1.9, 1.8, and 5.9 for biphenyl, PCB-1, PCB-3, PCB-77, and PCB-126. Because of the increase of biomass, the total residual amount of PCBs in carrots however, increased till the end of experiment. The portions of PCB-126 in carrot were 1.1% of the soil residues at 90 days after planting.

Study on the Toxicities of Polychlorinated Biphenyls, Phenol and Biphenyl (Polychlorinated Biphenyls, Phenol 및 Biphenyl의 독성학적 연구)

  • 홍사욱;정규혁
    • Environmental Analysis Health and Toxicology
    • /
    • v.1 no.1
    • /
    • pp.61-70
    • /
    • 1986
  • The effect of polychlorinated biphenyls (PCB), phenol and biphenyl on the body, liver and kidney weights, and the activity of $\delta$-aminolevulinic acid dehydratase (ALAD), and the contents of microsomal cytochrome P-450, and hematocrit, TBAvalue. PCB (200 mg/kg), phenol (200 mg/kg), biphenyl (200 mg/kg), and biphenyl (100 mg/kg) added phenol (100 mg/kg) was treated orally to Sprague-Dawley rats for 3 days. In all treated groups, the body weights were decreased, while the weights of liver and kidney were increased in comparison with that of control group. The activity of $\delta$-ALAD was increased and hematocrit was decreased in PCB treated group, on the contrary biphenyl treated group was appeared opposite direction. The contents of microsomal cytochrome P-450 and concentration of protein were increased in all treated group. In biphenyl treated group and phenol treated group, TBA value was increased in both groups.

  • PDF

In vitro Metabolism of Stanozolol to 3'-Hydroxystanozolol in the Liver S-9 Fraction of Polychlorinated Biphenyl-treated Rats (Polychlorinated biphenyl 전처리한 횐쥐 간장의 S-9 분획에서 Stanozolol의 Hydroxylation 대사체의 생성)

  • 권오승;류재천
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.379-383
    • /
    • 2000
  • Stanozolol (STZ, 17$\alpha$-methyl-17$\beta$-hydroxy-5$\alpha$-androstano-(3,2-c) pyrazole), an anabolic steroid, is an abused drug by body-builders or atheletes, as well as medicine for treatment of aplastic anemia and vascular thrombosis. In human volunteers, the major urinary metabolite of STZ was reported to be 3'-hydroxystanozolol that was identified by gas chromatography-mass selective detector (GC/MSD). The objective of this experiment is to investigate the in vitro metabolism of STZ in liver S-9 faction of polychlorinated biphenyl-induced rats. Reaction mixture including STZ as substrate and the S-9 faction was extracted with diethyl ether and quantified by the selected ion monitoring mode of GC/MSD. The selected concentration of substrate STZ is 100 nmole and the selected time for incubation in the reaction mixture was determined to 60 min. The amount of 3'-hydroxystanozolol produced was increased by about 6-fold in the reaction medium including the liver S-9 fraction of polychlorinated biphenyl-induced rats, compared to that of untreated rats. Inhibitors of cytochrome P450, SKF-525A and 7,8-benzoflavone, decreased the production of 3'-hydroxystanozolol by about 89~100% and 65~75%, respectively; In conclusion, hydroxylation of STZ into 3'-hydroxystanozolol is confirmed by GC/MSD and is catalyzed by cytochrome P450.

  • PDF

Biodegradation Pathways of Polychlorinated Biphenyls by Soil Fungus Aspergillus niger (Polychlorinated Biphenyl의 토양 미생물 Aspergillus niger에 의한 생분해 경로)

  • Kim, Chang-Su;Lim, Do-Hyung;Keum, Young-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As of many organochlorine pesticides, polychlorinated biphenyls are ubiquitous organic contaminants, which can be found in the most environmental matrices. Their toxic effects include endocrinedisrupting activity. Most researches with these toxicants performed with mixtures of congeners, namely Aroclor and related study has been done in complex environmental matrix, rather than single biosystems or pure congeners. 5 congeners were synthesized and their fates in pure microbial culture (Aspergillus niger) were determined in this study. Among biphenyl and synthetic congeners, biphenyl, PCB-1 (2-chlorobiphenyl), and PCB-3 (4-chlorobiphenyl) were rapidly transformed to hydrophilic metabolites, followed by PCB-38 (3,4,5-trichlorobiphenyl), while the degradation of PCB-126 (3,3',4,4',5-pentachlorobiphenyl) was not observed. The amounts of transformation for biphenyl, PCB-1, PCB-3, and PCB-38 were 65, 38, 52, and 2% respectively. The major metabolites of the above congeners were identified as mono- and di-hydroxy biphenyls, which are known to give adverse endocrinological effects.

Biodegradation of Biphenyl by Sphingbium yanoikuyae BK-10 (Biphenyl의 Sphingobium yanoikuyae BK-10에 의한 분해 특성)

  • Lee Jung-Bok;Kim Dong-Geol;Choi Chung-Sig;Sohn Ho-Yong;Kim Jang-Eok;Kwon Gi-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.174-179
    • /
    • 2006
  • Bacterium capable of using biphenyl as a sole source of carbon and energy were isolated from soil, and based on the results of 16S rDNA sequence, strain BK10 identified as a Sphingobium yanoiktiyae. The optimum cultural conditions were as follows; $NH_4NO_3$ 1g, $K_2HPO_4$ 1g, $MgSO_4{\cdot}7H_2O$ 0.5g, $CaCO_3$ 0.2 g per 1 liter of distilled water. The Sphingobium yanoikuyae BK10 strain was completely utilized biphenyl in mineral salt media containing biphenyl at concentration 500 $\mu$g/ml of biphenyl as a sole carbon and energy source within 48 hours. Optimumal pH and temperature for biphenyl degradation and cell growth of strains were 6.0$\sim$8.0 and 20$\sim$50$^{\circ}C$, respectively. Especially, at 30$^{\circ}C$, cell-growth were higher than other temperature. Cell grown on biphenyl has been shown to have a higher removal rate for biphenyl than grown on sucrose. This study shows that Sphingobium yanoikuyae BK10 strain had a high biodegradation capability of biphenyl and can be simulate a candidate compounds the bioremediation of PCBs (Polychlorinated biphenyl) contaminant soil and water.

Plant Terpenes Enhance Survivability of Polychlorinated Biphenyl (PCB) Degrading Pseudomonas pseudoalcaligenes KF707 Labeled with gfp in Microcosms Contaminated with PCB

  • Oh, Eun-Taex;Koh, Sung-Cheol;Kim, Eung-Bin;Ahn, Young-Hee;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.463-468
    • /
    • 2003
  • Polychlorinated biphenyl are toxic pollutants and their degradation is quite slow in the environment. Recently, interest if bioremediation using PCB-degrading bacteria has increaset,. In a previous report, plant terpenes (p-cymene, (S)-(-)-limonene, ${\alpha}-pynene$, and ${\alpha}-terpinene$) have been found to be utilized by a PCB degrader and to induce the biphenyl dioxygenase gene in pure culture. In this study, Pseudomonas pseudoalcaligenes KF707, a PCB-degrading Gram-negative soil bacterium, was used to determine whether the terpene stimulation of PCB degrader occurred in the natural environment. First, P. pseudoalcaligenes KF707 was genetically tagged using a transposon with gfp (green fluorescent protein) as a reporter gone. The population dynamics of P. pseudoalcaligenes KF707 harboring gfp gene in a PCB-contaminated environment was examined with or without terpenoids added to the microcosm. About 10-100-fold increase was found in the population of PCB degraders when terpene was added, compared with control (non-terpenes samples and biphenyl added samples). It was proposed that the gfp-monitoring system is very useful and terpenes enhance the survivability of PCB degraders in PCB-contaminated environments.

Isolation and Characterization of Pseudomonas sp. P2 Degrading Polychlorinated Biphenyls (PCBs)

  • Kim, Jung Ho;Sang Ki Choi;Moon Ki Park;Young Ho Kim;Seung Kyo Suh;Cheol Joo Woo;Heui Dong park
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.167-172
    • /
    • 1996
  • The bacterial strain P2 degrading polychlorinated biphenyls (PCBs) was isolated from the soil around the Shinchun stream in Taegu after enrichment culture in a media containing biphenyl as the sole carbon source. The isolate was identified as a strain of Pseudomonas sp. based on its morphological and physiological characteristics. The optimal conditions of initial pH of media and temperature for growth were 7.0 and $30^{\circ}C$, respectively. Degradation of biphenyl and PCBs was confirmed by GC during the culture of Pseudomonas sp. P2 in a media containing them at a concentration of 500 mg/I. It was observed that Pseudomonas sp. P2 could degrade 97.0$%$ of biphenyl and 60.0$%$ of PCBs after 160 h culture.

  • PDF

Genetic and Biochemical Characterization of the Biphenyl Dioxygenase from Pseudomonas sp. Strain B4

  • Rodarie, David;Jouanneau, Yves
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.763-771
    • /
    • 2001
  • Biphenyl dioxygenase (BPDO), which catalyzes the first step in the bacterial degradation of biphenyl and polychlorinated biphenyls, was characterized in Pseudomonas sp. B4. The bphA locus containing the four structural genes encoding BPDO were cloned and sequenced. A regulatory gene as well as a putative regulatory sequence were identified upstream of this locus. A transposase-like gene was found within a 1-kb region further upstream, thereby suggesting that the bphA locus may be carried on a transposable element. The three components of the BPDO enzyme have been separately overexpressed and purified from E. coli. The ferredoxin and terminal dioxygenase components showed biochemical properties comparable to those of two previously characterized BPDOs, whereas the ferredoxin reductase exhibited an unusually high lability. The substrate selectivity of BPDO was examined in vivo using resting cell assays performed with mixtures of selected polychlorinated biphenyls. The results indicated that para-substituted congeners were the preferred substrates. In vitro studies were carried out on a BPDO complex where the reductase from strain B4 we replaced by the more stable isoform from Comamonas testosteroni B-356. The BPDO enzyme had a specific activity of $0.26{\pm}0.02 {\mu}mol {min^-1}{mg^-1}\;of\;ISP_{BPH}$ with biphenyl as the substrate. The 2,3-, 4,4'-, and 2,4,4'-chlorobiphenyls were converted to single dihydrodiols, while 2,4'-dichlorobiphenyl gave rise to two dihydrodiols. The current data also indicated that 2,4,4'-trichlorobiphenyl was a better substrate than the 4,4'-dichlorinated congener.

  • PDF