• Title/Summary/Keyword: polycaprolactone

Search Result 136, Processing Time 0.027 seconds

Histological Evaluation of Bioresorbable Threads in Rats (랫드에서의 생분해성 매선요법에 대한 조직학적 분석)

  • Lee, Chang Gun;Jung, Jaeyun;Hwang, Samnoh;Park, Chan Oh;Hwang, Soonjae;Jo, Minjeong;Sin, Min Hi;Kim, Hyun Ho;Rhee, Ki-Jong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2018
  • Thread lifting has become popular as a minimally invasive technique for facial rejuvenation. Commercially available threads are composed of poly-L-lactic acid (PLLA), polycaprolactone (PCL), or polydioxanone (PDO). However, the histological changes that occur in response to implanted threads are unclear. The aim of this study was to evaluate histological changes that occur in response to implantation with three types of bioresorbable threads (PLLA, PCL, PDO) in rat skin. PLLA, PCL and PDO threads were implanted in the dorsal skin of Sprague Dawley rats and tissue samples were harvested 2, 4, 8 and 12 weeks post-implantation. To evaluate histologic changes induced by bioresorbable face-lifting threads, tissue samples were stained with hematoxylin & eosin, Masson's trichrome stain and Herovici's collagen stain. All three threads induced neocollagenesis of type 3 collagen in the rat skin. The amount of collagen induced by the threads was dependent on the thread surface area. The PDO cavern-type thread was most effective in inducing neocollagenesis due to its extensive surface area. Our results suggest that type 3 collagen induced by bioresorbable threads depends on the thread surface area to uphold the dermis and contributes to facial rejuvenation.

Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects

  • Song, Woong-Kyu;Kang, Joo-Hyun;Cha, Jae-Kook;Lee, Jung-Seok;Paik, Jeong-Won;Jung, Ui-Won;Kim, Byung-Hoon;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.5
    • /
    • pp.305-316
    • /
    • 2018
  • Purpose: The aim of the present study was to evaluate the biocompatibility and barrier function of mussel adhesive protein (MAP)-loaded collagen membranes in guided bone regeneration (GBR). Methods: Eight male New Zealand white rabbits were used. Four circular defects (diameter: 8 mm) were created in the calvarium of each animal. The defects were randomly assigned to 1) a negative control group, 2) a cyanoacrylate (CA)-loaded collagen membrane group (the CA group), 3) a MAP-loaded collagen membrane group (the MAP group), and 4) a group that received a polycaprolactone block with MAP-loaded collagen membrane (the MAP-PCL group). Specimens were harvested at 2 weeks (n=4) and 8 weeks (n=4) postoperatively for observational histology and histometric analysis. Results: In the histologic analysis, MAP was completely absorbed without any byproducts. In contrast, some of the CA adhesive remained, showing an inflammatory reaction, at 8 weeks. In the MAP-PCL group, the MAP-loaded collagen membranes served as a barrier membrane despite their fast degradation in GBR. No significant difference was found in the amount of new bone between the MAP-PCL and MAP groups ($1.82{\pm}0.86mm^2$ and $2.60{\pm}0.65mm^2$, respectively). Conclusions: The MAP-loaded collagen membrane functioned efficiently in this rabbit calvarial GBR model, with excellent biocompatibility. Further research is needed to assess clinical applications in defect types that are more challenging for GBR than those used in the current model.

Influence of Coating Materials and Emulsifiers on Nanoparticles in Manufacturing Process (코팅물질과 유화제가 나노입자 제조 및 안정성에 미치는 영향)

  • Kim, Byeong-Cheol;Chun, Ji-Yeon;Park, Young-Mi;Hong, Geun-Pyo;Lee, Si-Kyong;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.220-227
    • /
    • 2012
  • The objective of this study was to investigate the influence of emulsion processing with various homogenization treatments on the physical properties of nanoparticles. For the manufacturing of nanoparticles, by taking the emulsion-diffusion method, various coating materials, such as gum arabic, hydroxyethyl starch, polycarprolactone, paraffin wax, ${\kappa}$-carrageenan and emulsifiers like Tween$^{(R)}$60, Tween$^{(R)}$80, monoglyceride and Pluronic$^{(R)}$F68, were added into the emulsion system. Furthermore, the various speeds (7,000 rpm to 10,000 rpm), and times (15 s to 60 s) of homogenization were treated during the emulsion- diffusion process. NEO II homomixer was the most effective homogenizer for making nanoparticles as 51 nm ($D_{10}$) and 26 nm ($D_{50}$). To manufacture smaller nanoparticles, by using NEO II homomixer, 10,000 rpm of agitation speed, polycaprolactone as coating material, and Pluronic$^{(R)}$F68 as an emulsifier were the optimum operating conditions and components. For the stability of nanoparticles for 7 days, $20^{\circ}C$ of storage temperature was appropriate to maintain the particle size. From these results, the type of homogenizer, homogenization speed, homogenization time and storage temperature could affect the particle size. Moreover, type of coating materials and emulsifier also influenced the size and stability of the nanoparticles.

Resudual Stress Behavior and Characterization of Poly(urethane-imide) Crosslinked Networks (가교형 폴리우레탄이미드의 합성을 통한 잔류 응력 거동 측정 및 특성 분석)

  • Park, Mi-Hee;Yang, Seung-Jin;Jang, Wonbong;Han, Haksoo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.305-312
    • /
    • 2005
  • Poly(urethane-imide)s were prepared by reaction between crosslinkable endgroup containing soluble polyimide (PI) by chemical imidization and acrylate end-capped polyurethane (PU). Poly (amic acid) was prepared from 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-oxydianiline (ODA) and then end-capped with maleic anhydride (MA). The PU prepolymers were prepared by the reaction of polycaprolactone diol, tolylene 2,4-diisocyanate and end-capped with hydroxyl ethyl acrylate. The effect of PU content on the residual stress behavior, morphology and thermal property was studied. The poly(urethane-imide)s were characterized by thin film stress analyzer (TFSA), XRD, TGA and DMTA. Low residual stress and slope in cooling curve were achieved by higher PU content. Compared to typical polyurethane, these polymers exhibited better thermal stability due to the presence of the imide groups. Finally the residual stress of poly(urethane-imide)s was strongly affected by the morphological structure.

Synthesis of Thermosensitive and Biodegradable Methoxy Poly(ethylene glycol)-Polycaprolactone and Methoxy Poly(ethylene glycol)-Poly(lactic acid) Block Copolymers (온도감응 및 생분해성 폴리에틸렌 글리콜-폴리카프로락톤과 폴리에틸렌 글리콜-폴리락타이드 공중합체의 합성)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • The sol to gel transition of aqueous solution of block copolymers consisting of methoxy poly (ethylene glycol) (MPEG) and biodegradable polyesters such as $\varepsilon$-caprolactone and L-lactide was investigated as a function of temperature. MPEG-PCL was prepared by ring opening polymerization of $\varepsilon$-caprolactone in the presence of HClㆍEt$_2$O as monomer activator at room temperature. Also, MPEG-PLLA was prepared by ring opening polymerization of L-lactide in the presence of stannous octoate at 115$^{\circ}C$. The properties of block copolymers were investigated by $^1$H-NMR, IR, and GPC as well as the observation of thermo sensitive phase transition in aqueous solution. As the hydrophobic block length increased, the sol to gel transition temperature increased and curve of that steepen to lower concentration. To confirm the gel formation at body temperature, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After surging, we investigated the gelation in mice. The results obtained in this study confirmed the feasibility as biomaterials of injectable implantation for controlled release of drug and protein delivery.

Three-Dimensional Culture of Thymic Epithelial Cells Using Porous PCL/PLGAComposite Polymeric Scaffolds Coated with Polydopamine (폴리도파민으로 코팅된 다공성 PCL/PLGA 복합 폴리머 지지체를 이용한 흉선상피세포의 3차원 세포배양)

  • Seung Mi Choi;Do Young Lee;Yeseon Lim;Seonyeong Hwang;Won Hoon Song;Young Hun Jeong;Sik Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.612-622
    • /
    • 2023
  • T-cell deficiency may occur in various clinical conditions including congenital defects, cell/organ transplantation, HIV infection and aging. In this regard, the development of artificial thymus has recently been attracting much attention. To achieve this aim, the development of techniques for 3D culture of thymic stromal cells is necessary because thymocytes grown only in a 3D thymic microenvironment can be differentiated fully to become mature, immunocompetent T cells; the same cannot be achieved for thymocytes grown in 2D. This study aimed to develop a nanotechnology-based 3D culture technique using polymeric scaffolds for thymic epithelial cells (TECs), the main component of thymic stromal cells. Scanning electron microscopic observation revealed that the pores of both PCL and PCL/PLGA scaffolds were filled with TECs. Interestingly, TECs grown in 3D on polydopamine-coated scaffolds exhibited enhanced cell attachment and proliferation compared to those grown on non-coated scaffolds. In addition, the gene expression of thymopoietic factors was upregulated in TECs cultured in 3D on polydopamine-coated scaffolds compared to those cultured in 2D. Taken together, the results of the present study demonstrate an efficient 3D culture model for TECs using polymeric scaffolds and provide new insights into a novel platform technology that can be applied to develop functional, biocompatible scaffolds for the 3D culture of thymocytes. This will eventually shed light on techniques for the in vitro development of T cells as well as the synthesis of artificial thymus.