• Title/Summary/Keyword: polyacrylamide,

Search Result 1,291, Processing Time 0.026 seconds

Nitrogen Biofixing Bacteria Compensate for the Yield Loss Caused by Viral Satellite RNA Associated with Cucumber Mosaic Virus in Tomato

  • Dashti, N.H.;Montasser, M.S.;Ali, N.Y.;Bhardwaj, R.G.;Smith, D.L.
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.90-96
    • /
    • 2007
  • To overcome the problem of the yield reduction due to the viral satellite mediated protection, a culture mix of three nitrogen-fixing bacteria species of the genus Azospirillum (A. brasilienses N040, A. brasilienses SP7, and A. lipoferum MRB16), and one strain of cyanobacteria (Anabena oryzae Fritsch) were utilized as biofertilizer mixture in both greenhouse and field experiments. When protected plants were treated with biofertilizer mixtures, the fruit yield of biofertilized plants increased by 48% and 40% in a greenhouse and field experiment, respectively, compared to untreated plants inoculated with the protective viral strain alone. Polyacrylamide gel electrophoresis (PAGE) analysis of total nucleic acid (TNA) extracts revealed that biofertilization did not affect the accumulation of the viral satellite RNA (CARNA 5) that is required for plant protection against other destructive viral strains of CMV. The yield increment was a good compensation for the yield loss caused by the use of the protective viral strain associated with CARNA 5.

Paper Strength Improvement by Anionic PAM and Cationic Starch Adsorbed PCC (음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘에 의한 종이 강도 향상)

  • Choi, Do-Chim;Choi, Eun-Yeon;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • Fillers have been used for printing paper to improve printability, sheet formation and optical properties and to reduce production costs by replacing expensive wood pulps. However, an increased filler content will decrease paper strength because filler particles interfere with fiber-fiber bonding. In order to increase filler content without sacrificing too much paper strength in high filler content papers, the surface of precipitated calcium carbonate (PCC) has been modified by adsorbing anionic polyacrylamide and cationic starch in series. The adsorbed polymer layers would enhance interactions between the filler surface and the fiber surface, improving internal bonding. It was found that the modified PCC increased paper strength at a given filler content compared to the coventional method. Negligible differences in optical properties and formation of paper, filler and fines retention and drainage on the wire section were observed between the modified and the conventional PCC. However, the decreased bulk of paper was observed when the modified PCC was used.

Purification and characterization of an alkaline protease produced by a xanthomonas sp. YL-37

  • Lee, Chang-Ho;Kim, Hee-Sik;Seok, Kwon-Gi;Oh, Hee-Mock;kang sang mo;Kwon, Tae-Jong;Yoon, Byung-Dae
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.115-119
    • /
    • 1995
  • The alkaline protease of Xanthomonas sp. YL-37 has been purified, and the properties of the enzyme investigated. The alkaline protease of Xanthomonas sp. YL-37 was purified form crude enzyme by ammonium sulfate fractionation, CM-cellulose ion exchange chromatography, and Sephadex G-100 gel filtration. Through the series of chromatographies, the enzyme was purified to homogenecity with specific activity of 4.23 fold higher than that of the crude broth. The molecular weight of the purified protease has been estimated to be 62 KDa on SDS-polyacrylamide gel electrophoresis. The optimal pH and temperature for alkaline protease activity were 11.0 and 50.deg.C, respectively. The enzyme was stable between pH 5.0 and 10.0 and up to 50.deg.C. Enzyme activity was lost up to 50% on heating at 70.deg.C for 30 minutes. The activity of alkaline protease was inhibited by Cu$\^$2+/, Zn$\^$2+/, Hg$\^$2+/, PMSF, and activated by Mn$\^$2+/ and Ca$\^$2+/. The $K_{m}$ value for casein as a substrate was 4.0 mg/ml.

  • PDF

Nucleotide Sequence and Inducibility Analysis of Chloramphenicol Acetyltransferase Gene from Staphylococcus aureus R-plasmid pSBK203 (Staphylococcus aureus에서 분리된 R-plasmid pSBK203상의 chloramphenicol acetyltransferase 인자의 염기서열 및 유발성 분석)

  • 권동현;변우현
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.194-200
    • /
    • 1989
  • The nucleotide sequence of inducible chloramphenicol acetyl-transferase(CAT) gene isolated from a small plasmid pSBK203 of Staphylococcus aureus was determined. The base sequence shows that structural gene of pSBK203-CAT encodes a protein of 213 amino acids and has a leader region which encodes a short polypeptide of 9 amino-acids in its upstream. vertical bar /sup 35/S vertical bar-Methionine labelled CAT gene product in minicell showed almost same mobility with pC194-CAT of which molecular weight is 24Kdal on polyacrylamide gel electrophoresis. Predicted amino acid sequence of pSBK203-CAT has revealed a high degree of homology with the CATs of pC194 and pC221 than those of cat-86, Tn9 and proteus mirabilis PM13.

  • PDF

Purification and characterization of a xylanase from alkalophilic cephalosporium sp. RYM-202

  • Kyu, Kang-Myoung;Kwon, Tae-Ik;Rhee, Yuung-Ha;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.109-114
    • /
    • 1995
  • Alkalophilic Cephalosporium sp. RYM-202 produced multiple xylanases extracellularly. One of these xylanases was purified to electrophoretical homogeneity by chromatography with DEAE-Sephadex A-50, Sephacryl S-200 HR and Superose 12 HR. The purified xylanase differed from most other microbial xylanases in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase in that it had low-molecular weight and acidic isoelectric point. The molecular weight of the xylanase was 23 kDa by SDS-polyacrylamide electrophoresis and 24 kDa by gel permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permentation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity permeation chromatography, and the isoelectric point was 4.3. The xylanase had the highest activity at pH 8.0 and 50 .deg.C. It was stable over a wide range of pH and retained more than 80% of its original activity after 24 h of incubation even at pH 12. The Km values of this enzyme on birchwood xylan and oat spelts xylan were 2.33 and 3.45 mg/ml, respectively. The complete inhibition of the enzyme of n-bromosuccinimide suggests the involvement of tryptophan in the active site. The sylanase lacked activity towards crystalline cellulose and carboxymethyl cellulose.

  • PDF

Purification and Characterization of Carboxymethyl Cellulase from Lampteromyces japonicus (Lampteromyces japonicus가 생산하는 Carboxymethyl Cellulase의 정제 및 특성)

  • Yoo, Kwan-Hee;Kim, Jun-Ho;Chang, Hyung-Soo
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.125-129
    • /
    • 2004
  • A carboxymethyl cellulase (CMCase) bas been isolated and purified from Lampteromyces japonicus. The molecular weight of CMCase was estimated to be 42 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The maximum activity of the purified CMCase was observed at pH 6.0 and $30^{\circ}C$, and stable for pH 4 to 7 to maintain 40% activity. The CMCase activity was activated by $Al_{2}(SO_{4})_{3}$, and inhibited by SDS. Also, the enzyme activity was decreased by the addition of ethylene diamine tetraacetic acid (EDTA), suggesting that the purified CMCase is metalloenzyme.

Purification and Characterization of a Novel Serine Protease with Fibrinolytic Activity from Tenodera sinensis (Chinese Mantis) Egg Cases

  • Cho, So-Yean;Hahn, Bum-Soo;Kim, Yeong-Shik
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.579-584
    • /
    • 1999
  • Mantis egg fibrolase (MEF-3) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60, DEAE Affi-Gel blue gel affinity chromatogragphy, and MONO-Q anion-exchange chromatography. This protease had a molecular weight of 35,600 Da as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions and its isoelectric point was 6.0. The N-terminal amino acids sequence was Ala-Thr-Gln-Asp-Asp-Ala-Pro-Pro-Gly-Leu-Ala-Arg-Arg. This sequence was 80% homologous to the serine protease from Tritirachium album. MEF-3 readily digested the ${\alpha}$-and ${\beta}$-chains of fibrinogen and more slowly the ${\gamma}$-chains. It showed strong proteolytic and fibrinolytic activities. Phenylmethanesulfonyl fluoride and chymostatin inhibited its proteolytic activity, while EDTA, EGTA, cysteine, ${\beta}$-mercaptoethanol, elastinal, tosyl-lysine chloromethylketone, and tosyl-amido-2-phenylethyl chloromethyl ketone did not affect its proteolytic activity. Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEF-3 was benzoyl-Phe-Val-Arg-p-nitroanilide. Based on these experimental results, we speculated that MEF-3 is a serine protease with a strong fibrin(ogen)olytic activity.

  • PDF

Asymmetric Polymerase Chain Reaction-Single-Strand Conformation Polymorphism (Asymmetric PCR-SSCP) as a Simple Method for Allele Typing of HLA-DRB

  • Kang, Joo-Hyun;Kim, Kyeong-Hee;Maeng, Cheol-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.529-534
    • /
    • 1999
  • Asymmetric PCR and single-strand conformation polymorphism (SSCP) methods were combined to analyze human leukocyte antigen (HLA)-DRB allele polymorphism. Asymmetric PCR amplification was applied to generate single-stranded DNA (ssDNA) using the nonradioactive oligonucleotide primers desinged for the polymorphic exon 2 region. The conformational differences of ssDNAs, depending on the allele type, were analyzed by nondenaturing polyacrylamide gel electrophoresis and visualized by ethidium bromide staining. The ssDNAs were clearly separated from double-stranded DNA without interference and obviously migrated depending on their allele type. This method was applied to the genomic DNA either from homozygous or from heterozygous cell lines containing the DR4 allele as template DNA using DR4-specific primers, and satisfying results were obtained. Compared to the standard PCR-SSCP method, this asymmetric PCR-SSCP method has advantages of increased speed, reproducibility, and convenience. Along with PCR-SSP or sequence-based typing, this method will be useful in routine typing of HLA-DRB allele.

  • PDF

Purification of the Glycosylated Polyphenol Oxidase from Potato Tuber

  • Kwon, Do-Yoon;Kim, Woo-Yeon
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.163-168
    • /
    • 1996
  • Glycosylated polyphenol oxidase was purified from potato tuber using ammonium sulfate fractionation, Sephadex G-100, and concanavalin A Sepharose column chromatography. Two or three types of polyphenol oxidase were separated on concanavalin A Sepharose. Type I and II polyphenol oxidases did not bind to concanavalin A Sepharose. Type I seemed to be an aggregated form of polyphenol oxidase. Type III polyphenol oxidase, which is presumed to be glycosylated because it was bound to concanavalin A Sepharose and eluted with $\alpha$-D-methyl glucopyranoside, was further purified by chromatography on Econo-Pac Q and Superose 12. Glycosylated polyphenol oxidase was purified 130-fold from the dissolved ammonium sulfate pellet resulting in about $6\;{\mu}g$ of the enzyme from 100 g of potato tuber periderm. The molecular weight of the glycosylated enzyme determined by SDS-polyacrylamide gel electrophoresis was about 64,000. Optimum temperature and pH of both II and type III potato polyphenol oxidases were $20^{\circ}C$ and pH 7.0, respectively. Glycosylated form of polyphenol oxidase (type III) preferred catechol to catechin as a substrate, whereas type II enzyme showed the reverse substrate preference.

  • PDF

Inhibition of the Biodegradative Threonine Dehydratase from Serratia marcescens by ${\alpha}$-Keto Acids and Their Derivatives

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.118-123
    • /
    • 1995
  • Biodegradative threonine dehydratase was purified to homogeneity from Serratia marcescens ATCC 25419 by streptomycin sulfate treatment, Sephadex G-200 gel filtration chromatography followed by AMP-Sepharose 4B affinity chromatography. The molecular weight of the purified enzyme was 118,000 by fast protein liquid chromatography using superose 6-HR. The enzyme was determined to be a homotetrameric protein with subunit molecular weights of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was inhibited by ${\alpha}-Keto$ acids and their derivatives such as ${\alpha}-ketobutyrate$, pyruvate, glyoxlyate, and phosphoenol pyruvate, but not by ${\alpha}-aminobutyrate$ and ${\alpha}-hydroxybutyrate$. The inhibition of the enzyme by pyruvate and glyoxylate was observed in the presence of AMP. The inhibitory effect of glyoxylate was decreased at high enzyme concentration, whereas the inhibition by pyruvate was independent of the enzyme concentration. The kinetics of inhibition of the enzyme by pyruvate and glyoxylate revealed a noncompetitive and mixed-type inhibition by the two inhibitors with respect to L-threonine and AMP, respectively.

  • PDF