• Title/Summary/Keyword: polyacrylamide,

Search Result 1,289, Processing Time 0.025 seconds

Purification and Characterization of a Fibrinolytic Enzyme Produced from Bacillus amyloliquefaciens K42 Isolated from Korean Soy Sauce. (한국재래간장에서 분리한 Bacillus amyloliquefaciens K42가 생산하는 혈전용해효소의 정제 및 특성)

  • 윤경현;이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.284-291
    • /
    • 2003
  • Bacillus amyloliquefaciens K-42, which produces strongly a fibrinolytic enzyme, Was isolated from Ganjang, a traditional Korean soy sauce. The fibrinolytic enzyme was purified to homogeneity by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Sephadex A-50, gel chromatography on Sephadex G-100, and gel chromatography on Sephadex G-75 of the culture filtrate of Bacillus amyloliquefaciens K42. The purified enzyme showed the specific activity of 59.4 units per milligram, which was increased by 17.1 fold over the culture broth. And the molecular weight of purified fibrinolytic enzyme was confirmed to be about 45,000 Dalton by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme activity was relatively stable at pH 4.0-10.0 and the optimum pH was 8.0. The activity of the purified enzyme was increased by $Mg^{2+}$ , Cu$^{2+}$ but the enzyme was totally inhibited by $Ba^{2+}$ $Hg^{2+}$ In addition, the enzyme activity was potently inhibited by EDTA, EGTA and CDTA. It was concluded that the purified enzyme was a metalloprotease. And Km value was 2.03 mg/ml to fibrin.

Optimal Conditions for the Laccase Production from Fomitopsis pinicola Mycelia (Fomitopsis pinicola 균사체로부터 Laccase의 최적생산조건)

  • Park, Naomi;Park, Sang-Shin
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • The culture conditions to maximize the production of laccase (EC 1.10.3.2) from Fomitopsis pinicola mycelia were investigated. Among the tested media for the enzyme production, mushroom complete medium (MCM ; 2% dextrose, 0.2% peptone, 0.2% yeast extract, 0.05% $KH_2PO_4$, and 0.05% $MgSO_4{\cdot}7H_2O$) showed the highest activity of the enzyme. To optimize the culture condition for the laccase activity, influence of various carbon and nitrogen sources was investigated in MCM. Among various carbon and nitrogen sources, 2% glucose and 0.4% peptone showed the highest production of the enzyme, respectively. For the phosphorus and inorganic source, 0.05% $NaH_2PO_4$ and 0.05% $CaCl_2$ were best for the enzyme activity. The enzyme production was reached to highest level after the cultivation for 8 days at $25^{\circ}C$. Native polyacrylamide gel electrophoresis (PAGE) followed by the laccase activity staining using 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate was performed to identify the laccase under culture conditions studied. Zymogram analysis of the culture supernatant showed a laccase band with molecular mass of 52 kDa. The optimum pH and temperature for the enzyme activity were $80^{\circ}C$ and pH 3.0.

Purification and properties of a basic inducible protein, ICG with chitinase and ${\beta}-1,3-glucanase$ activities from rice cell suspension culture media treated with chitooligosaccharides (Chitooligosaccharides 처리에 의해 유도되는 chitinase, ${\beta}-1,3-glucanase$ 활성 보유 벼 염기성 단백질 ICG의 분리 및 성질)

  • Um, Sung-Yon;Park, Hee-Young;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.37 no.1
    • /
    • pp.43-48
    • /
    • 1994
  • A basic inducible protein, ICG, containing chitinase and ${\beta}-1,3-glucanase$ activity concomittantly was purified from cell suspension culture media of rice after the treatment of chitooligosaccharides. The isolated ICG enzyme gave a single band on native and SDS polyacrylamide gel electrophoresis and its molecular weight was estimated to be 52.53 kd. The optimal temperature and optimal pH of both enzyme activities in ICG were $60^{\circ}C$, pH 6.0 for chitinase activity and $37^{\circ}C$, pH 4.0 for ${\beta}-1,3-glucanase$ activity. $K_M$ and $V_{max}$ values for chitinase were 0.474 mM. 2.997 nM/min., and those for ${\beta}-1,3-glucanase$ were 1.004 mM 0.739 nM/min. respectively. TLC analysis of the chitooligosaccharide hydrolysates with ICG enzyme indicated that ICG acts as endochitinase.

  • PDF

Purification of Xylogone sphaerospora ${\beta}$-mannanase and Growth Activity of Bifidobacterium spp. by Konjac Glucomannan Hydrolysates (Xylogone sphaerospora 유래 ${\beta}$-mannanase 정제 및 Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 증식활성)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.159-163
    • /
    • 2008
  • Xylogone sphaerospora ${\beta}$-mannanase was purified by Sephadex G-100 column chromatography. The specific activity of the purified enzyme was 8.44 units/ml protein, representing an 56.27-folds purification of the original crude extract. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 42kDa. Konjac glucomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 3 and 4 glucomannooligosaccharides. For elucidate the structure of D.P 3 and 4 glucomannooligosaccharides, sequential enzymatic action was performed. D.P 3 and 4 were identified as M-G-M and M-M-G-M (G- and M- represent glucosidic and mannosidic link-ages). To investigate the effects of konjac glucomannooligosaccharides on in vitro growth of Bifido-bacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 3 and D.P. 4 glucomannooligosaccharides, respectively. B. longum and B. bifidum grew up 3.9-fold and 2.8-fold more effectively by the treatment of D.P. 4 glucomannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 4 was more effective than D.P. 3 glucomannooligosaccharide on the growth of Bifidobacterium spp.

Reduced Protein Denaturation in Thermotolerant Cells by Elevated Levels of HSP70 (열내성이 유도된 세포에서 HSP70 단백질 증가에 의한 단백질 변성 감소)

  • Han, Mi-Young;Park, Young-Mee
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.433-444
    • /
    • 1996
  • We describe a novel approach to evaluate quantitatively the amounts of denatured proteins in cells upon heat exposure. A thiol compound, diamide [azodicarboxylic acid bis (dimethylamide)] causes protein cross-linking with exposed sulfyhydryl residues of denatured proteins. Since denatured proteins expose normally well-hidden sulfhydryl groups, these will be preferentially cross-linked by diamide. Thus diamide acts to 'trap' denatured proteins. We observed that protein aggregates (high molecular weight protein aggregates, HMA) appeared on SDS-polyacrylamide gels run under non-reducing conditions and that the amount of HMA can be quantified by scanning the gels using a gas flow counter. Heating cells followed by a fixed dose of diamide exposure resulted in HMA increases in a heat-dose dependent manner, demonstrating that the quantitation of HMA could serve as a measure of heat-denatured proteins. We compared thermotolerant and nontolerant cells and found decreased HMA in tolerant cells upon heat treatment. As an attempt to examine the kinetics of protein renaturation (or 'repair'), we measured the amounts of aggregates formed by the addition of diamide at various times after heat shock. Such experiments demonstrate an equally rapid disappearance of HMA in previously unheated and in thermotolerant cells. Levels of HMA in tolerant cells increased significantly after electroporation of HSP70 specific mAbs, suggesting an involvement of HSP70 in reducing HMA levels in thermotolerant cells upon heat exposure. Immunoprecipitation studies using anti-HSP70 antibody indicated an association of HSP70 with heat-denatured proteins. Our results suggest that heat induces protein denaturation, and that elevated level of HSP70 present in thermotolerant cells protects them by reducing the level of protein denaturation rather than by facilitating the 'repair' (or degradation) process.

  • PDF

The effect of UV blocking lens on the denaturation of RNase A induced by UV-A (UV-A로 유발된 RNase A의 변성에 대한 UV 차단렌즈의 작용)

  • Park, Young Min;Park, Chung Seo;Lee, Heum-Sook;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • The aim of this study was to find the proper UV-A blocking percentage that could protect the denaturation of ribonuclease A (RNase A), one of protein enzymes in eye, induced by UV-A. RNase A was irradiated at 365 nm for 1, 3, 6, 24, 48, 72, 96 hr and the extent of denaturation was monitored by polyacrylamide gel electrophoresis. Furthermore, it was investigated whether blocking of UV-A by 20, 50, 80 and 99% eyeglass lens could protect the denaturation of RNase A or not. The denaturation of RNase A was induced by only 1 hr UV-A irradiation and the extent of denaturation became severe depending on UV-A irradiation time. The mild denaturation of RNase A induced by irradiation for 1 hr could be sufficiently protected by 20% UV-A blocking lens. When RNase A was irradiated for 3 hr, more that 50% blocking of UV-A needed to prevent the denaturation. Even though 99% UV-A blocking lens was used, the denaturation of RNase A induced by 6 hr irradiation could not be prevented perfectly. However, 99% UV-A blocking lens could dramatically decrease the severe denaturation of RNase A induced by irradiation for 96 hr.

  • PDF

A Practical Study on the Solid-Liquid Separation of the Swine Wastewater from Slurry Feedlot (슬러리 양돈분뇨의 최적 고액분리 방안 연구)

  • Park, Seung-Kyun;Choi, Jae-Gil;Chung, Yoon-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.60-70
    • /
    • 2000
  • The swine wastewater from slurry feedlot has been a social problem in Korea since the proper treatment is very difficult. Therefore, a practical study on the Solid-Liquid separation of swine wastewater from slurry feedlot was carried out as a pan of pretreatment for the successful biological treatment. The appropriate type of coagulant and optimum dosage were proposed for the most efficient Solid-Liquid separation and the best Solid-Liquid separation methods for different size of feedlot were determined through the tests with field-scaled Solid-Liquid separation equipment. The appropriate coagulant for the conditioning of dewatering property was E-851, which is a cationic polyelectrolyte made of polyacrylamide, and the optimum dosage was 0.24~0.6% of unit solids weight. Mesh Screen, Drum Screen, Cyclone Drum Filter, Screw Press, High-speed Screw Decanter, Low-speed Screw Decanter, and Dissolved Air Flotation Process had been investigated in this study. According to the results, the Screw Press was the best dewatering equipment for the small & medium size for feedlot and low-speed Screw Decanter was the best for the large size feedlot & public owned treatment facilities for the primary Solid-Liquid separation, and the most suitable secondary treatment process was DAF. On the other hand, reductions for the requirement of bulking agent and organic loading by Solid-Liquid separation process were 94.8% and 84.7%, respectively Therefore, the Solid-Liquid separation process must be required for the successful treatment of swine wastewater from slurry feedlot.

  • PDF

Purification of Inositol Triphosphate Kinase from Bovine Brain (소의 뇌로부터 Inositol Triphosphate Kinase의 정제)

  • Kim, Jung-Hye;Lee, Jae-Tae
    • Journal of Yeungnam Medical Science
    • /
    • v.13 no.1
    • /
    • pp.46-58
    • /
    • 1996
  • Inositol 1,4,5-triphosphate($InsP_3$) is a second messenger for mobilizing intracellular $Ca^{2+}$. It can be dephosphorylated by soluble and particulate forms on $InsP_3$ 5-phosphatase, or phosphorylated to produce inositol 1,3,4,5-tetrakisphosphate($InsP_3$) by $InsP_3$ 3-kinase. These enzymes represent possible targets for the regulation of the $InsP_3/InsP_4$ signal. $InsP_3$ 3-kinase which catalyses th ATP-dependent phosphorylation of $InsP_3$ was purified from bovine brain tissue. All operation were carried out at $4^{\circ}C$. Fresh tissure was homogenized and centrifuged. The supernatant was pooled. Proteins were precipitated from 10% polyethylene glycol, and suspended solution was applied to DEAE cellulose column for chromatography. As the result of above procedure, two isozymes of $InsP_3$ 3-kinase, I and II were obtained. Each isozyme was applied to Matriz green gel, Calmodulin-Affigel 15 column and subsequent phenyl-TSK HPLC column. Specific activites(SA) and fold of puriety were observed at each purification step of chromatography. At DEAE cellulose chromatography, SA were I, 0.6 and II, 4.8 nM/min/mg, and folds were I, 17.2 and II, 16.6. At Matrix green gel chromatography, SA were I, 18 and II, 11 nM/min/mg, folds were I, 62.1 and II, 38.0. At calmodulin-Affigel 15 column chromatography, SA were I, 19 and II, 13 nM/min/mg, folds were I, 65.5 and II, 44.8. Finally $InsP_3$ kinase I and II were purified 3,103-fold and 2,310-fold, and SA were I, 900 and II, 670 nM/min/mg, respectively. SDS-polyacrylamide gel electrophoresis elucidated 3 distinct fractions of Mr of 145,000, 85,000 and 69,500 from isozyme I, and 2 distinct fractions of Mr of 79,000 and 57,000 from isozyme II.

  • PDF

Purification and Characterization of Phytase from Bacillus subtilis (Bacillus subtilis가 생산하는 Phytase의 정제 및 특성)

  • Koh Hyun-Jung;Chu In-Ho;Chung Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • A bacterial strain producing high level of a phytase was isolated from cattle feces and identified as Bacillus subtilis, and designated as Bacillus sp. CF 5-26. The production of the phytase from Bacillus sp. CF 5-26 reached the highest level after 72 hours at $37^{\circ}C$. The optimum condition of the media for the production of phytase was 10% rice bran extract, 0.1% whey protein powder, $0.01%\;CaCl_{2},\;0.01%\;KH_{2}PO_4$. The phytase was purified 20.3 folds with ethanol precipitation, Sephadex G-100, CM Sepharose CL-6B and Sephacryl S-100-HR column chromatography. The molecular weight of the purified enzyme was estimated to be 66 kDa on SDS-polyacrylamide gel electrophoresis. The purified phytase activity was stable up pH 5.0, 7.0, 11.0 and the remaining activity was 50% when it was treated at $100^{\circ}C$ for 1 hour. The substrate specificity of phytase was most active against sodium phytate and inositol polyphosphate compound. And the phytase hydrolysed tripolyphosphate and pyrophosphate a little. The Km value for the sodium phytate was 0.64 mM and the Vmax value was $4.41\;{\mu}mol/min$.

Optimization of Endoglucanase Production from Fomitopsis pinicola Mycelia (Fomitopsis pinicola 균사체로부터 Endoglucanase의 최적생산)

  • Gu, Ji-Min;Park, Sang-Shin
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.145-152
    • /
    • 2013
  • The culture conditions to maximize the production of endoglucanase (EC 3.2.1.4) from the brown rot fungus Fomitopsis pinicola MKACC 54347 mycelia were investigated. Among the tested media for endoglucanase production, Mandel's mineral salts medium (MSM; 1% cellulose, 0.1% peptone, 0.14% $(NH_4)_2SO_4$, 0.03% urea, 0.2% $KH_2PO_4$, 0.03% $MgSO_4{\cdot}7H_2O$, 0.03% $CaCl_2$, and 0.1% trace metal solution (19.8 mM $FeSO_4$, 13.0 mM $MnSO_4$, 12.2 mM $ZnSO_4$, and 15.4 mM $CoCl_2$)) produced the highest activity of the enzyme. To optimize the medium composition for enzyme activity, the effects of various carbon, nitrogen, phosphorus, and inorganic sources were investigated in MSM. Maximal enzyme production was accomplished using a medium containing 2% carboxymethyl cellulose (CMC), 2% yeast extract, 0.2% $KH_2PO_4$, 0.03% $MnSO_4$, and 0.3% trace metal solution. Different physiological conditions, like incubation period and temperature, were also examined to assess their influence on enzyme production. Enzyme production from F. pinicola reached its highest level after cultivation for 8 days at $25^{\circ}C$. Nondenaturing polyacrylamide gel electrophoresis (PAGE), followed by the endoglucanase activity staining using CMC as the substrate, was performed to identify the endoglucanase under the culture conditions studied. Zymogram analysis of the culture supernatant revealed an endoglucanase band with a molecular mass of 52 kDa. The optimum pH and temperature for enzyme activity were $55^{\circ}C$ and pH 5.0, respectively.