• Title/Summary/Keyword: poly-crystallization

Search Result 321, Processing Time 0.029 seconds

Crystallization Behavior and Mechanical Properties of High Density Polyethylene/metallocene catalyzed Poly(ethylene-co-octene) Blends (고밀도 폴리에틸렌/폴리에틸렌-옥텐 공중합체 블렌드의 결정화 거동 및 기계적 물성에 관한 연구)

  • Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3108-3113
    • /
    • 2013
  • Compatibility between mLLDPE and HDPE was investigated by observing the crystallization behavior and mechanical properties of their blends. HDPE and mLLDPE blends were prepared by a melt-blending with compositions of 100/0, 80/20, 60/40, 40/60/ 20/80 and 0/100. Four different mLLDPEs containing various octene contents (4.1, 6.8, 9.8 및 12.5 mol.%) were investigated. The melting temperature and crystallization peak temperature of the blends were measured by DSC and the mechanical properties were measured in an universal testing machine. By observation that the melting and crystallization peak temperatures of one component were affected by its counterparts, it was revealed that HDPE and mLLDPE are miscible or at leat partially miscible at molten state. It was also found that the crystalline phase of mLLDPE contains HDPE crystals. However. it was not clear that mLLDPE was cocrystalized in the crystalline phase of HDPE. By various investigation with DSC and mechanical properties, it was concluded that the compatibility between mLLDPE and HDPE decreases with the octene content in the mLLDPE.

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

The manufacture of poly(vinylidene fluoride) thin film through vapor deposition method (진공증착법을 이용한 PVDF 박막의 제작)

  • Park, S.H.;Im, U.C.;Han, S.O.;Jin, G.S.;Chung, H.D.;Park, K.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1190-1192
    • /
    • 1995
  • Poly(vinylidene fluoride)(PVDF) is one of the most studied polymers in the latest date. The interest in PVDF lies in its remarkable piezoelectric and pyroelectric properties. Also, PVDF has at least four known crystalline structures(; they are referred to as the ${\alpha},\;{\beta},\;{\gamma}\;and\;{\alpha}_p$ phase or forms II, I, III and $IV_p$). In this study, the manufactured PVDF thin film through vapor deposition method had form II(; the glass at $70^{\circ}C$). This thin film was investigated by x-ray diffraction(XRD), Fourier Transform Infrared(FT-IR) spectroscopy and Differential Thermal Analysis(DTA). XRD and FT-IR indicate crystallization forms from the glass at $70^{\circ}C$ into form II.

  • PDF

Laser crystallization of Si film for poly-Si thin film transistor on plastic substrates

  • Kwon, Jang-Yeon;Cho, Hans-S;Kim, Do-Young;Park, Kyung-Bae;Jung, Ji-Sim;Park, Young-Soo;Lee, Min-Chul;Han, Min-Koo;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.957-961
    • /
    • 2004
  • In order to realize high performance thin film transistor (TFT) on plastic substrate, Si film was deposited on plastic substrate at 170$^{\circ}C$ by using inductivity coupled plasma chemical vapor deposition (ICPCVD). Hydrogen concentration in as-deposited Si film was 3.8% which is much lower than that in film prepared by using conventional plasma enhanced chemical vapor deposition (PECVD). Si film was deposited as micro crystalline phase rather than amorphous phase even at 170$^{\circ}C$ because of high density plasma. By step-by-step Excimer laser annealing, dehydrogenation and recrystallization of Si film were carried out simultaneously. With step-by-step annealing and optimization of underlayer structure, it has succeeded to achieve large grain size of 300nm by using ICPCVD. Base on these results, poly-Si TFT was fabricated on plastic substrate successfully, and it is sufficient to drive pixels of OLEDs, as well as LCDs.

  • PDF

Ultra low temperature polycrystalline silicon thin film transistor using sequential lateral solidification and atomic layer deposition techniques

  • Lee, J.H.;Kim, Y.H.;Sohn, C.Y.;Lim, J.W.;Chung, C.H.;Park, D.J.;Kim, D.W.;Song, Y.H.;Yun, S.J.;Kang, K.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.305-308
    • /
    • 2004
  • We present a novel process for the ultra low temperature (<150$^{\circ}C$) polycrystalline silicon (ULTPS) TFT for the flexible display applications on the plastic substrate. The sequential lateral solidification (SLS) was used for the crystallization of the amorphous silicon film deposited by rf magnetron sputtering, resulting in high mobility polycrystalline silicon (poly-Si) film. The gate dielectric was composed of thin $SiO_2$ formed by plasma oxidation and $Al_2O_3$ deposited by plasma enhanced atomic layer deposition. The breakdown field of gate dielectric on poly-Si film showed above 6.3 MV/cm. Laser activation reduced the source/drain resistance below 200 ${\Omega}$/ㅁ for n layer and 400 ${\Omega}$/ㅁ for p layer. The fabricated ULTPS TFT shows excellent performance with mobilities of 114 $cm^2$/Vs (nMOS) and 42 $cm^2$/Vs (pMOS), on/off current ratios of 4.20${\times}10^6$ (nMOS) and 5.7${\times}10^5$ (PMOS).

  • PDF

Preparation of Al@Fe2O3 Core-Shell Composites Using Amphiphilic Graft Copolymer Template

  • Patel, Rajkumar;Kim, Sang Jin;Kim, Jin Kyu;Park, Jung Su;Kim, Jong Hak
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.209-213
    • /
    • 2014
  • A graft copolymer of poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a structure-directing agent to prepare $Al@Fe_2O_3$ core-shell nanocomposites through a sol-gel process. The amphiphilic property of PVC-g-POEM allows for good dispersion of Al particles and leads to specific interaction with iron ethoxide, a precursor of $Fe_2O_3$. Secondary bonding interaction in the sol-gel composites was characterized by Fourier transform-infrared (FT-IR) spectroscopy. The well-organized morphology of $Al@Fe_2O_3$ core-shell nanocomposites was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were used to analyze the elemental composition and crystallization structure of the composites.

THE TWO-STEP RAPID THERMAL ANNEALING EFFECT OF THE PREPATTERNED A-SI FILMS (프리 패턴한 비정질 실리콘 박막의 two-step RTA 효과)

  • Lee, Min-Cheol;Park, Kee-Chan;Choi, Kwon-Young;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1333-1336
    • /
    • 1998
  • Hydrogenated amorphous silicon(a-Si:H) films which were deposited by plasma enhanced chemical deposition(PECVD) have been recrystallized by the two-step rapid thermal annealing(RTA) employing the halogen lamp. The a-Si:H films evolve hydrogen explosively during the high temperature crystallzation step. In result, the recrystallized polycrystalline silicon(poly-Si) films have poor surface morphology. In order to avoid the hydrogen evolution, the films have undergone the dehydrogenation step prior to the crystallization step Before the RTA process, the active area of thin film transistors (TFT's) was patterned. The prepatterning of the a-Si:H active islands may reduce thermal damage to the glass substrate during the recrystallization. The computer generated simulation shows the heat propagation from the a-Si:H islands into the glass substrate. We have fabricated the poly-Si TFT's on the silicon wafers. The maximun ON/OFF current ratio of the device was over $10^5$.

  • PDF

High Performance Poly-Si TFT (${\mu}>290cm^2/Vsec$) Direct Fabricated on Plastic Substrate below $170^{\circ}C$

  • Kwon, Jang-Yeon;Kim, Do-Young;Jung, Ji-Sim;Kim, Jong-Man;Lim, Hyuck;Park, Kyung-Bae;Cho, Hans-S;Zhang, Xiaoxin;Yin, Huaxiang;Xianyu, Wenxu;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.149-152
    • /
    • 2005
  • We present the characterization of poly-Si TFT fabricated below on Plastic Substrate below $170^{\circ}C$ on plastic substrate using excimer laser crystallization of Xe sputtered Si films. Gate insulator with a breakdown field exceeding 8 MV/cm was deposited by using inductively coupled plasma CVD. Finally, we successfully fabricate TFT with a electron field-effect mobility value greater than $290\;cm^2/Vsec$.

  • PDF

Characterization of Poly(ethylene-co-vinyl acetate) (EVA) Using Thermal Analytical Techniques

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • Poly(ethylene-co-vinyl acetate) (EVA) is a copolymer of ethylene and vinyl acetate (VA). It is important to determine the VA content of EVA, since the properties of EVA depend highly on the VA content. EVA copolymers have been used in a wide range of applications appropriate for the different VA contents. IR, NMR, and TGA are generally used for determination of the VA content of EVA copolymers. Of these, TGA is the most reliable method and can be applied to cured EVAs. Analytical methods for determination of the VA content and properties of EVA copolymers via TGA were herein reviewed. Thermal behaviors of EVA copolymers (glass transition temperature ($T_g$), melting point ($T_m$), and crystallization temperature ($T_c$)) determined by DSC were also reviewed. Analysis of the related literature revealed that the $T_g$, $T_m$, and $T_c$ decrease by about 0.46, 1.36, and $2.08^{\circ}C$, respectively, for every 1 wt% in VA content. A method for determining the degree of crosslinking of cured EVA copolymers was also reviewed, and the degree of crosslinking tends to increase with the decrease in the VA content.

Biodegradable PLA-based Biocomposites with Spent Coffee Grounds as Degradation Accelerator: Hydrolytic Degradation and Characterization Research

  • Kim, Youngsan;Lim, Daekyu;Kwon, Sangwoo;Jang, Hyunho;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • The goal of this study was to evaluate the effect of spent coffee grounds (SCG) biofiller on the morphological, thermal, mechanical and hydrolytic degradation characteristics of poly(lactic acid) (PLA) based biocomposites. The PLA-based biocomposite films were fabricated by using a high-viscosity kneading and hot-pressing machine. The PLA/SCG biocomposites were analyzed with SEM, DSC, TGA, UTM and hydrolytic degradation test. Aggregation in the PLA matrix is a result of increasing SCG concentrations. In the thermal properties, it was described that the cold crystallization temperature (Tcc) decreased as SCG was added to PLA. When SCG was incorporated to PLA, the degradation onset temperature (Tonset) revealed a diminish. The elastic modulus increased while tensile strength of PLA diminished as SCG was applied. Through hydrolysis analysis, the decomposition of PLA was accelerated with the addition of SCG. This research confirmed the possibility of devloping an eco-friendly packaging material with high degradability as SCG hasten the breakdown of PLA.