• Title/Summary/Keyword: poly-3-hexylthiophene(P3HT)

Search Result 104, Processing Time 0.02 seconds

Characteristics of Electronic Absorption Spectrum and Photoluminescence in Cast-Poly(3-hexylthiophene) Films (캐스팅법으로 제작한 Poly(3-hexylthiophene)의 흡수스펙트럼에 따른 형광 특성)

  • 김주승;구할본;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.57-60
    • /
    • 1998
  • Poly(3-hexylthiophene)(P3HT) was synthesized by use of FeCl$_3$ as a oxidizing agent at $25^{\circ}C$. The infrared spectrum of our polymer gave good evidence for the conjugation of 3-hexylthiophene monomer unit. P3HT contains the HT(head-to-tail) linkage larger than 64% based on NMR analysis. Electronic absorption and photoluminescence studies show that cast films of P3HT have three exciting state. Absorption spectrum was separated with three maximum peaks by Giese-French method and shifted to the shorter wavelength with increasing temperature. Separated absorption spectrum of P3HT is well adapted to PL peak appeared at longer wavelength. Low temperature PL spectrum is well separated at 669nm, 733nm and 812nm.

  • PDF

Assessment of the Intermolecular π-π Configurations of Poly(3-Hexylthiophene) using Polarized Raman Spectroscopy

  • Juwon Kim;Myeongkee Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.146-150
    • /
    • 2024
  • Precise molecular configuration elucidation of poly(3-hexylthiophene) (P3HT) through advanced spectroscopic techniques is pivotal for enhancing P3HT-based photovoltaic device efficiencies since its high charge-carrier mobility is directly correlated to its well-ordered structure. In this study, we examine Raman depolarization ratios of annealed and non-annealed P3HT films to elucidate their intermolecular π-π configurations. Our findings suggest that the backbone of the annealed film possesses stronger π-π conjugation overlaps than that of the non-annealed film owing to the greater depolarization ratio of the annealed film. In addition, the depolarization ratios are also supported by theoretical calculations, where parallel-stacked thiophene structures display a higher depolarization ratio compared with that of twisted-stacked structures, as calculated by the Møller-Plesset perturbation theory. This study highlights the utility of polarized Raman spectroscopy as a versatile tool for assessing the degree of molecular order in highly conjugated polymer films.

Study on the Morphologies and Electrical Properties in Polymer Blend Thin-Films Based on Two Poly(3-hexylthiophene) Conjugated Polymers with Different Regio-regularities (서로 다른 위치 규칙성을 가지는 두 개의 Poly(3-hexylthiophene) 공액 고분자를 기반으로 한 고분자 복합 박막의 구조와 전기적 특성에 대한 연구)

  • Ganghoon Jeong;Nann Aye Mya Mya Phu;Rae-Su Park;Jeong Woo Yun;Yeongun Ko;Mincheol Chang
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.349-354
    • /
    • 2023
  • Poly(3-hexylthiophene) (P3HT) is a conjugated polymer that is highly soluble in organic solvents and is readily available. However, its electrical properties as an active channel in electronic devices are not enough for practical applications, necessitating further improvement in the properties. In this study, we demonstrate that the blending of two P3HT polymers (i.e., regio-regular (RR) P3HT and regio-random (RRa) P3HT) with different regioregularities can significantly improve charge transport characteristics of the blend films. The morphological and electrical properties of the blend films were systematically investigated by varying the ratio between two P3HT polymers. Atomic force microscopy (AFM), X-ray diffraction (XRD), and UV-visible absorption spectroscopy (UV-vis) were employed to evaluate the morphological and optoelectronic properties of the blend films. The crystallinity of the blend films increased with increasing the content of RRa-P3HT to 20 wt% and gradually decreased as the content increased to 80%. Consistently, the highest charge carrier mobility was obtained from the blend films containing 20 wt% RRa-P3HT, which value was measured to be 0.029 cm2/V·s. The values gradually decreased to 0.0007 cm2/V·s with increasing the content of RRa-P3HT to 80 wt%.

Electrical Characteristics Enhancement of Conjugated Polymer Thin Film Transistor by Using Dipping Method (Dipping 방법을 이용한 공액 고분자박막 트랜지스터의 전기적 특성 향상)

  • Kim, Hye Su;Na, Jin Yeong;Park, Yeong Don
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.188-192
    • /
    • 2014
  • In this work, it is possible to simply improve the molecular ordering of a conjugated polymer thin film by dipping into poor solvent. The structural order, optical, and electrical properties of poly(3-hexylthiophene) (P3HT) films were profoundly influenced by dipping time and solubility of solvent. Especially the dipping time in methylene chloride was controlled to efficiently improve the molecular ordering of the P3HT. The correlation between the structural order and the electrical properties was used to optimize the dipping time in the appropriate solvent.

Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device (Poly(3-hexylthiophene) 발광소자의 금속전극 의존성)

  • 서부완;김주승;김형곤;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF

Study on Photolithographic Patterning for P3HT Active Layer (포토리소그래피를 이용한 P3HT 활성층의 패터닝에 대한 연구)

  • Park, Kyeong-Dong;Nam, Dong-Hyun;Park, Jeong-Hwan;Han, Kyo-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.294-302
    • /
    • 2007
  • We studied on possibility of the application of photolithography technique to patterning the organic active layer poly(3-hexylthiophene) (P3HT). In the case of selective etching method, we made thin oxide film on P3HT thin film using $O_2$ treatment. We achieved the field-effect mobilities in the saturation regime ${\sim}1.2{\times}10^{-3}\;cm^2/V{\cdot}s$, $I_{on/off}$ ratios ${\sim}10^5$ in the selective etching method, ${\sim}7.4{\times}10^{-4}cm^2/V{\cdot}s$, $I_{on/off}$ ratios ${\sim}5{\times}10^3$ in the lift-off one. These values are higher than ones of the unpatterned P3HT-based OTFTs. On the basis of the above results, we demonstrate the photolithographic patterning for P3HT active layer is successfully carried out without degradation of P3HT.

Synthesis and Characterization of Phenylene-Thiophene-Thieno[3,4-b]pyrazine Oligomer (Phenylene-Thiophene-Thieno[3,4-b]pyrazine 올리고머의 합성과 특성)

  • Hwang, Mi-Lim;Li, Ji-Cheng;Seo, Eun-Ok;Lee, Soo-Hyoung;Lee, Youn-Sik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.95-100
    • /
    • 2011
  • During the development of low band-gap organic materials(p-type semiconducting organic compounds) for organic solar cells, an oligomer consisting of 2,5-dioctyloxyphenylene(OP), 3-hexylthiophene(HT), and 2,3-dimethylthieno[ 3,4-b]pyrazine(TP) as repeat units, oligo(OP-HT-TP), was synthesized. The oligomer was amorphous in nature in the temperature range studied, and well soluble in common organic solvents such as chloroform. The maximum absorption wavelength was 716 nm in solid state. The band-gap and HOMO/LUMO energy levels of oligo(OP-HT-TP) were measured to be 1.20 eV and -5.27/4.04 eV, respectively. However, the absorbance of the oligomer at maximum absorption wavelength was less than one fifth of that of poly(3-hexylthiophene) which has been most frequently used in fabrication of organic solar cells.

Real-time Evolution of Poly (3-hexylthiophene) type-II Phase in P3HT:PCBM Blend thin films

  • Lee, Hyeon-Hwi;Lee, Si-U;Geum, Hui-Seong;Kim, Han-Seong;Kim, Je-Han;Lee, Dong-Ryeol;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.168.2-168.2
    • /
    • 2015
  • We observed the temperature-dependent evolution and behavior of P3HT type-II phase during a real time annealing process from a cryo-cooled low temperature in the absence and presence of an Al electrode. A poly (3-hexylthiophene) (P3HT) Type-II phase in the P3HT:PCBM films started to form near at $-10^{\circ}C$, regardless of Al layer presence. In the absence of an Al layer, type-II phase was extinct at $30^{\circ}C$. However, the extinction temperature was extended to $50^{\circ}C$ in the presence of the Al layer. Simultaneously, combined with the type-II phase, a 1:3 ordered P3HT type-II (1/3,0,0) super-lattice peak evolved. These type-II domains tended to be formed near the Al electrode layer with higher aligned status than host P3HT crystals.

  • PDF

Amino-Functionalized Alkylsilane SAM-Assisted Patterning of Poly(3-hexylthiophene) Nanofilm Robustly Adhered to SiO2 Substrate

  • Pang, Ilsun;Boo, Jin-Hyo;Sohn, Honglae;Kim, Sung-Soo;Lee, Jae-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1349-1352
    • /
    • 2008
  • We report a novel patterning method for a homo-polymeric poly(3-hexylthiophene) (P3HT) nanofilm particularly capable of strong adhesion to a $SiO_2$ surface. An oxidized silicon wafer substrate was micro-contact printed with n-octadecyltrichlorosilane (OTS) monolayer, and subsequently its negative pattern was selfassembled with three different amino-functionalized alkylsilanes, (3-aminopropyl)trimethoxysilane (APS), N- (2-aminoethyl)-3-aminopropyltrimethoxy silane (EDAS), and (3-trimethoxysilylpropyl) diethylenetriamine (DETAS). Then, P3HT nanofilms were selectively grown on the aminosilane pre-patterned areas via the vapor phase polymerization method. To evaluate the adhesion, patterning, and the film itself, the PEDOT nanofilms and SAMs were investigated with a $Scotch^{(R)}$ tape test, contact angle analyzer, ATR-FT-IR, and optical and atomic force microscopes. The evaluation showed that the newly developed all bottom-up process can offer a simple and inexpensive patterning method for P3HT nanofilms robustly adhered to an oxidized Si wafer surface by the mediation of $FeCl_3$ and amino-functionalized alkylsilane SAMs.

Nanostructure and Thermal Effects Dependent on the Film Thickness in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester(P3HT:PCBM) Films Fabricated by 1,2-Dichlorobenzene Solvent for Organic Photovoltaics (1,2-Dichlorobenzene Solvent를 이용한 고분자 유기태양전지에서 박막 두께에 따른 나노 구조와 열처리 효과)

  • Lee, Hyun Hwi;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • Film thickness dependent nanostructure evolution by a post annealing was investigated in poly (3-hexylthiophene):phenyl-C61-butyric acid methyl ester(P3HT:PCBM) films for organic solar cells which were fabricated by dichlorobenzene(DCB) solvent. In case of a 70nm thin film, the thermal annealing process affected to slight increment of the P3HT crystals in the surface region. On the other hand, large number of small sized P3HT crystals near the surface region was formed in the 200nm thick film. The solar cell devices showed the 3% power conversion efficiency(PCE) in 1:0.65 and 1:1 ratio(by weight) of P3HT and PCBM in 70nm and 200nm thickness conditions, respectively. Despite to the similar PCE, the short circuit current Jsc was different in 70nm and 200nm devices, which was related to the different nanostructure of P3HT:PCBM after thermal annealing.