• 제목/요약/키워드: poly ADP

검색결과 421건 처리시간 0.027초

HepG2 간암세포에 대한 부자 추출물의 고사 유도 효과 (The Apoptosis-inducing Effect of Radix Aconiti Extract in HepG2 Human Hepatoma Cells)

  • 권강범;김은경;정은실;심정섭;김강산;신병철;송용선;류도곤
    • 대한한의학회지
    • /
    • 제25권2호
    • /
    • pp.33-40
    • /
    • 2004
  • Objective : This study investigated the apoptotic effect and its mechanism of Radix Aconiti (RA) extract and aconitine, which is a major constituent of RA, in HepG2 human hepatoma cells. Methods : We used MTT and DNA fragmentation assay to investigate cell viability and apoptotic effect on RA extract-treated HepG2 cells. In addition, to clarify the mechanism of RA extract-induced apoptosis, we applied caspase-3 enzyme activity assay and Western blotting method on poly-(ADP-ribose) polymerase (PARP) protein expression. Results : Treatment with RA extract resulted in the decrease of cell viability, and this effect was caused from apoptosis as confirmed by discontinuous fragmentation of DNA in HepG2 cells, but aconitine did not. Also, RA extract-treated HepG2 cells induced the activation of caspase-3 enzyme activity in time- and dose-dependent manners, which was accompanied by the cleavage of 116 kD PARP to 85 kD product. Conclusions : These results suggest that the apoptotic effects of RA extract on HepG2 cells could not be explained by aconitine. Additionally, RA extract induced apoptosis in hepatoma cells through caspase-3 activation and subsequent PARP cleavage.

  • PDF

Expression of Poly (ADP-ribose) Polymerase During Apoptosis Induced by Ultraviolet Radiation in HeLa $S_3$ Cells

  • Chang, Jeong-Hyun;Kwon, Heun-Young
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.349-354
    • /
    • 2006
  • Induction of apoptosis allows the organism to get rid of abnormal cells and also of tumor cells. Understanding the mechanism involved in Ultraviolet radiation (UV) induced apoptosis may improve its therapeutic efficacy. In this study, we present expression of poly (ADP-ribose) polymerase (PARP) during apoptosis induced by UV in HeLa $S_3$ cells. Four different assays were performed in this study: morphological assessment of apoptotic cells and cell viability, DNA fragmentation analysis by agarose gel electrophoresis, quantitative assay of fragmented DNA, and expression of PARP by the western blot analysis. The percentages of apoptotic HeLa $S_3$ cells irradiated with $75J/m^2$ UV was increased continuously from 3 hrs incubation. DNA ladder pattern was appeared at 6 hrs. The amount of nucleosomal DNA fragments in cells treated UV increased from 3 to 12 hrs incubation and gradually decreased. The cleavage of PARP in HeLa $S_3$ cells irradiated with UV was induced, and the cleavage of PARP was more delayed in the cells pretreated with $5J/m^2$ UV and subsequently irradiated with $75J/m^2$ UV. than that in the cells only irradiated with $75J/m^2$ UV. Thus these data suggest that the cleavage of PARP relates with DNA fragmentation associated with apoptosis.

  • PDF

Butein에 의한 MCF-7 유방암 세포의 세포사멸에 의한 항암 효과 (Apoptosis Induction of MCF-7 Human Breast Carcinoma Cells by Butein)

  • 송바다;김순례;김성훈;신용철;고성규
    • 동의생리병리학회지
    • /
    • 제24권3호
    • /
    • pp.385-389
    • /
    • 2010
  • Butein(3,4,2',4-tetrahydroxychalcone) has been reported anticancer effects in several cancer type, which is prostate, bladder cancer but breast cancer is not. This study was to investigate the antiproliferative effects by butein(3,4,2',4-tetrahydroxychalcone) in MCF-7 human breast carcinoma cells. We invastigated the effects of dose-dependently cell growth inhibition by butein, which could be proved by WST-1 assay. Also, flow cytometry analysis was butein increase percentage of subG1 phase. As well as, butein induces apoptosis through the expression of caspase-8,-3 and poly(ADP-ribose) polymerase(PARP) activation but not in DMSO treated cells. Taken together, this results suggest that butein induced MCF-7 apoptosis through extrinsic pathway and thus may have potential tumor suppressor in breast cancer.

노랑하늘타리 추출물의 HL-60 혈액종양세포 Apoptosis 유도 효과 (Induction of Apoptosis by Extracts of Trichosanthes kirilpwii var. japonica in HL-60 Leukemia Cells)

  • 김상철;박수영;현재희;이영기;박덕배;강사윤;유은숙;강희경
    • 약학회지
    • /
    • 제47권5호
    • /
    • pp.319-324
    • /
    • 2003
  • This study examined the inhibitory effect of extracts of Trichosanthes kirilpwii sorted according to the parts on the growth of HL-60 cells. The growth of HL-60 leukemia cells was markedly inhibited by the treatment of the 80% methanol extract of roots (10 $\mu\textrm{g}$/mι), stems (50$\mu\textrm{g}$/mι), pips (10$\mu\textrm{g}$/mι), and gourds (100 $\mu\textrm{g}$/mι), or the ethylacetate fraction of leaves (100 $\mu\textrm{g}$/mι). when the HL-60 cells were treated with the extracts of T. kirilpwii sorted according to the parts, DNA fragmentation and sub-G1 hypodiploid cells were observed. Moreover, T. kirilpwii extracts increased the level of the expression of the active form of caspase-3 and the activation of caspase-3 was demonstrated by the cleavage of poly(ADP-ribose) polymerase, a vital substrate of effector caspase. The results suggest that the inhibitory effect of extracts of T. kirilpwii sorted according to the parts on the growth of HL-60 cells seems to arise from the induction of apoptosis.

기계환기로 인한 급성 폐손상에서 poly(ADP-ribose) polymerase-1의 역할 (The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury)

  • 김제형;윤대위;허규영;정기환;이승룡;이상엽;신철;심재정;인광호;유세화;강경호
    • Tuberculosis and Respiratory Diseases
    • /
    • 제60권4호
    • /
    • pp.451-463
    • /
    • 2006
  • 연구배경: 활성산소종은 기계환기로 인한 폐손상 (ventilator-induced lung injury, VILI)에서 주요한 역할을 한다. Poly (ADP-ribose) polymerase-1 (PARP1)은 DNA 손상 감시 기능을 하는 단백질로서, DNA 파열을 신호하고 복구에 관여한다. 그러나 활성산소종에 의한 것과 같은 심한 유전자 손상을 받게 되면, 과활성화되어 ${\beta}$-nicotinamide adenine dinucleotide ($NAD^+$)의 결핍을 통한 세포의 사멸을 초래하여, 염증 반응을 일으킨다. 본 연구에서는 VILI의 기전에 있어서 PARP1의 역할 및 그 억제제의 효과를 고찰하고자 하였다. 방법: 48마리의 수컷 C57BL/6 생쥐를 겉보기 수술군 (Sham군), 폐보호적 환기군(lung protective ventilation group, LPV군), 기계환기기로 인한 폐손상군 (ventilator-induced lung injury group, VILI군) 및 PARP1 억제제인 PJ34 전처치 후 기계환기로 인한 폐손상군 (PJ34+VILI군)으로 나누어 실험하였다. LPV군에 대한 기계환기는 $PIP\;15cmH_2O$ + $PEEP\;3cmH_2O$ + RR 90/min. 조건으로, VILI 및 PJ34+VILI군에 대해서는 $PIP\;40cmH_2O$ + $PEEP\;0cmH_2O$ + RR 90/min.의 조건으로 2시간 동안 시행하였다. PJ34+VILI군에서 PARP1 억제제로는, PJ34 20 mg/Kg을 기계환기 2시간 전에 복강 내로 주사하였다. VILI의 정도는 습건중량비 및 급성폐손상 지수로 측정하였고, PARP1의 활성은 biotinylated NAD를 이용한 면역조직화학적 방법을 이용하였다. 또한 기관지폐포세척액 (bronchoalveolar lavage fluid, BALF) 내에서 myeloperoxidase (MPO) 활성 및 tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$), interleukin-$1{\beta}$ ($IL-1{\beta}$), IL-6 등의 염증성 시토카인의 농도를 측정하였다. 결과: PJ34+VILI군에서 VILI군과 비교하여, PJ34 전처치로 인하여 폐손상의 정도가 현저히 감소하였다 (p<0.05). 5개의 고배율 시야에서 관찰한 PARP1의 활성을 보이는 세포의 수는 VILI군에서 유의하게 증가하였고, PJ34+VILI군에서 현저히 감소하였다 (p=0.001). BALF 내에서 측정한 MPO 활성 및 $TNF-{\alpha}$, $IL-1{\beta}$, IL-6의 농도 역시 PJ34+VILI군에서 의미 있게 감소하였다 (p<0.05). 결론: VILI의 기전에 있어서 PARP1의 과활성이 주요한 역할을 하고, PARP1 억제제가 MPO 활성 및 염증성 시토카인의 감소와 함께 VILI의 발생을 억제한다.

Involvement of Oxidative Stress and Poly(ADP-ribose) Polymerase Activation in 3-Nitropropionic Acid-induced Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Young-Jae;Oh, Young-Ah;Jung, Jin-Ah;Im, Hye-In;Koh, Seong-Eun;Maeng, Sung-Ho;Joo, Wan-Seok;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.325-331
    • /
    • 2003
  • 3-Nitropropionic acid (3-NP) inhibits electron transport in mitochondria, leading to a metabolic failure. In order to elucidate the mechanism underlying this toxicity, we examined a few biochemical changes possibly involved in the process, such as metabolic inhibition, generation of reactive oxygen species (ROS), DNA strand breakage, and activation of Poly(ADP-ribose) polymerase (PARP). Exposure of SK-N-BE(2)C neuroblastoma cells to 3-NP for 48 h caused actual cell death, while inhibition of mitochondrial function was readily observed when exposed for 24 h to low concentrations (0.2${\sim}$2 mM) of 3-NP. The earliest biochemical change detected with low concentration of 3-NP was an accumulation of ROS (4 h after 3-NP exposure) followed by degradation of DNA. PARP activation by damaged DNA was also detectable, but at a later time. The accumulation of ROS and DNA strand breakage were suppressed by the addition of glutathione or N-acetyl-L-cysteine (NAC), which also partially restored mitochondrial function and cell viability. In addition, inhibition of PARP also reduced the 3-NP-induced DNA strand breakage and cytotoxicity. These results suggest that oxidative stress and activation of PARP are the major factors in 3-NP-induced cytotoxicity, and that the inhibition of these factors may be useful in protecting neuroblastoma cells from 3-NP-induced toxicity.

Association of Poly (ADP-Ribose) Polymerase 1 Variants with Oral Squamous Cell Carcinoma Susceptibility in a South Indian Population

  • Anil, Sukumaran;Gopikrishnan, PB;Basheer, Ashik Bin;Vidyullatha, BG;Alogaibi, Yahya A;Chalisserry, Elna P;Javed, Fawad;Dalati, MHN;Vellappally, Sajith;Hashem, Mohamed Ibrahim;Divakar, Darshan Devang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.4107-4111
    • /
    • 2016
  • Background: Oral cancers account for approximately 2% of all cancers diagnosed each year; however, the vast majority (80%) of the affected individuals are smokers whose risk of developing a lesion is five to nine times greater than that of non-smokers. Tobacco smoke contains numerous carcinogens that cause DNA damage, including oxidative lesions that are removed effectively by the base-excision repair (BER) pathway, in which poly (ADP-ribose) polymerase 1 (PARP-1), plays key roles. Genetic variations in the genes encoding DNA repair enzymes may alter their functions. Several studies reported mixed effects on the association between PARP-1 variants and the risk of cancer development. Till now no reported studies have investigated the association between PARP-1 variants and oral squamous cell carcinoma (OSCC) risk in an Indian population. Materials and Methods: In the present case control study 100 OSCC patients and 100 matched controls were genotyped using PARP1 single nucleotide peptides (SNP's) rs1136410 and rs3219090 using TaqMan assays. Results: The results indicated significantly higher risk with PARP1 rs1136410 minor allele "C" (OR=1.909; p=0.02942; CI, 1.060-3.439). SNP rs1136410 also showed significantly increased risk in patients with smoking habit at C/C genotype and at minor allele C. Conclusions: The PAPR-1 Ala762Val polymorphism may play a role in progression of OSCC. Larger studies with a greater number of samples are needed to verify these findings.

S-allylcysteine 매개 caspases의 활성화 및 PARP의 불활성화를 통한 HeLa 세포주의 증식 억제효과 (S-allylcysteine-mediated Activation of Caspases and Inactivation of PARP to Inhibit Proliferation of HeLa)

  • 김현희;공일근;민계식
    • 생명과학회지
    • /
    • 제27권2호
    • /
    • pp.164-171
    • /
    • 2017
  • 본 연구에서는 인간 자궁경부암세포주에서 S-allylcysteine (SAC)이 세포자멸경로에 중요한 역할을 담당하는 initiator caspase의 하나인 caspase-9와 effector caspase에 속하는 caspase-3 및 caspase-7 그리고 DNA 복구에 관여하는 poly ADP-ribose polymerase (PARP)의 발현조절에 미치는 영향과, SAC에 의한 이러한 세포자멸 및 DNA 복구 관련 단백질의 발현변화가 세포증식억제를 통한 기능적 작용을 유발하는지를 조사하였다. 단백질 발현분석 결과, 특히 50 mM의 SAC로 48시간 동안 처리하였을 경우, procaspase-3, -7, -9 및 PARP의 발현은 각각 94%, 38%, 95% 및 64% 감소되었으며, 이와 반대로 caspase-3, -7, -9 및 cleaved-PARP의 발현은 현저히 증가되었다. 또한 cell proliferation assay 결과, 20 mM 이상의 SAC 처리는 6, 12, 24 및 48시간에서 농도 및 시간 의존적인 세포증식 억제효과를 나타내었다. 이러한 결과는 SAC 처리가 자궁경부암세포의 증식을 억제하며, 이에 대한 가능한 분자적 작용기전들 중의 하나로 세포자멸과정 중 initiator caspase의 하나인 caspase-9의 활성을 유도하고 이에 따른 effector caspase인 caspase-3과 caspase-7의 활성을 촉진시킬 뿐만 아니라 DNA 복구에 관여하는 PARP의 불활성화를 초래함으로써 세포자멸 유도에 관여하는 것으로 사료된다.

MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling

  • Zhang, Shiqing;Sun, Peng;Xiao, Xinru;Hu, Yujie;Qian, Yan;Zhang, Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.239-253
    • /
    • 2022
  • Epithelial-mesenchymal transition (EMT) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.

새로운 피라졸린 화합물의 합성과 구조결정 및 항암효과 (Synthesis and Identification of Novel Pyrazoline and Its Anti-cancer Property)

  • 고동수
    • Journal of Applied Biological Chemistry
    • /
    • 제54권2호
    • /
    • pp.143-146
    • /
    • 2011
  • Novel pyrazoline (4) was synthesized from chalcone (3) which was prepared from 2'-hydroxy-l'acetonaphthone (1) and 4-methoxy benzaldehyde (2). Pyrazoline (4) forms resonance assisted hydrogen bond between naphthol hydroxyl group and imine nitrogen in a pyrazoline ring. Pyrazoline (4) shows Poly ADP-ribose Polymerase (PARP) cleavage ability as a proof of apoptosis in cancer cell, which reveals its anti-cancer property.