• Title/Summary/Keyword: poly(urea-formaldehyde)

Search Result 3, Processing Time 0.016 seconds

Microencapsulation of Phenyl Acetate with Poly(urea-formaldehyde) (Poly(urea-formaldehyde)에 의한 페닐아세테이트의 미세캡슐화)

  • Jo, Ye-Hyun;Song, Young-Kyu;Yu, Hwan-Chul;Cho, Sung-Youl;Kumar, S. Vijay;Ryu, Byung-Cheol;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.152-156
    • /
    • 2011
  • We have performed microencapsulation of phenyl acetate using poly (urea-formaldehyde) as a shell material, and studied the effect of agitation rate,. core/shell mass ratio, surfactant concentration, and reaction time on capsule characteristics such as size, shell thickness, and surface morphology. The formation of microcapsules was confirmed by FTIR and TGA, and capsule characteristics were studied by optical microscopy and FE-SEM. Capsule size and shell thickness reduced with increasing agitation rate. As the mass of shell material was increased, shell thickness and nanoparticles on capsule surface increased. Capsule size and shell thickness decreased with increasing the concentration of a surfactant. Increasing reaction time caused increased capsule yield and shell thickness.

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Preparation of Charged Composite Particles for Electrophoretic Display (전기영동 디스플레이용 대전 복합입자의 제조)

  • Na, Hae-Jin;Baek, Jeong-Ju;Kim, Ji-Suk;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.347-352
    • /
    • 2009
  • Charged organic-inorganic composite particles were prepared for the application to electrophoretic display technology such as electronic paper. $TiO_2$ and $Co_3O_4$ particles were used for core particles and were coated with poly(methyl methacrylate) by dispersion polymerization. Composite particles were endowed with charge moiety for electrophoresis; positive charge for $TiO_2$ and negative charge for $Co_3O_4$ composite particles. Scanning electron microscopic results revealed that the charged composite particles have spherical shape. Densities of the composite particles were controlled to be that of medium of electrophoresis. Density of $TiO_2$ particle changed from 4.02 to 1.44 g/$cm^3$ after the polymer coating, and that of $Co_3O_4$ particles changed from 6.11 to 1.49 g/$cm^3$. Urea, melamine, and formaldehyde were used as wall materials for capsule, and microcapsule containing black or white particles inside were prepared by in-situ polymerization. Microcapsule showed the inspection by a video microscope demonstrated the formation of uniform transparent capsules.