• Title/Summary/Keyword: poly(methyl acrylate)-poly(acrylonitrile) copolymers

Search Result 4, Processing Time 0.015 seconds

pH Effect on Relaxation Spectra of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers by REM Model (REM 모델에 의한 Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체 완화스펙트럼의 pH 영향)

  • Kim, Nam Jeong
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.135-140
    • /
    • 2013
  • The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples was carried out in air, distilled water, pH 3, 7 and 11 solutions at various temperatures using a tensile tester equipped with a solvent chamber. The relaxation spectra of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the equation of relaxation spectrum derived from the Ree-Eyring and Maxwell model. The determination of relaxation spectra was performed from computer calculation using a Laplace transform method. It was observed that the relaxation spectra of these samples are directly related to the distribution of molecular weights and self-diffusions of flow segments.

Stress Relaxation of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers (Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체의 응력완화)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.223-230
    • /
    • 2012
  • The rheological parameters of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The determination of rheological parameters was performed from computer calculation. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusions and viscosities and activation energies of flow segments.

Evolution of Phase Morphology During Compounding of Ternary Blends in a Twin Screw Extruder (이축 압출기를 이용한 혼련에서 삼성분계 블렌드의 상구조 형성과정)

  • Kim, Hyungsu;Lee, Shi-Choon;D .Y. Yu;C. G. Gogos
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.247-255
    • /
    • 1998
  • The morphological changes during melt compounding of ternary blends containing various combinations of acrylonitrile-butadiene-styrene(ABS), methyl methacrylate-butadiene-ethyl acrylate(MBE), styrene-acrylonitrile(SAM) copolymers, and poly(methyl methacrylate)(PMMA) as dispersed components in a fixed matrix of polycarbonate(PC) have been investigated. Depending on the composition of the blend, MBE particles and PMMA phase appear to locate at the PC-SAN interface under the influence of interfacial tensions and motion induced coalescence. The interfacial viscosity is found to be a critical factor that affects the amount of coalescence.

  • PDF

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.