• Title/Summary/Keyword: poly(ethylene oxide)(PEO)

Search Result 111, Processing Time 0.024 seconds

Synthesis and Properties of Block Copolymer Comprising of Poly(DL-lactic acid) and Poly(ethylene oxide) (Poly(DL-lactic acid)/Poly(ethylene oxide)을 포함한 블록공중합체의 합성 및 특성)

  • 이찬우;배기서
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.582-588
    • /
    • 2002
  • The block copolymers were prepared by the ring opening polymerizati on of DL-lactide by poly(ethylene oxide) (PEO) with diethylzinc (ZnE$_2$) as a catalyst. When the feed ratio of PEO was over 30% relative to DL-lactide, the polymerization of DL-lactide took place from the PEO hydroxyl terminals to provide the desired A -B-A or A-B block copolymer. The block copolymers were made of films by cast method and the films obtained was drawn to 2.5 times at 60 $\^{C}$. At the same draw ratio, the tensile modulus of the films was decreased with increasing PEO content in the block copolymers. It was therefore suggested that the block copolymers comprising of PDLLA and PEO, had high potentials as the biomaterials with improved flexibility.

Temperature Dependence of the Intrinsic Viscosities for Poly(ethylene oxide)-Water and -Aqueous Urea Systems (Poly(ethylene oxide)-물, Poly(ethylene oxide)-요소 수용액에 대한 고유점도의 온도의존)

  • Jeon, Sang Il;Chang, Gue Dong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.748-755
    • /
    • 1996
  • The effects of temperature on the conformational properties of poly(ethylene oxide) (PEO) in aqueous and aqueous urea solutions are reported. The values of intrinsic viscosity and Huggins coefficients for the PEO dissolved in water and urea/water mixtures (urea concentration 0.2, 1, and 2 M) were obtained using a viscometry method and discussed with respect to the change of water structure. At low temperatures (below 22 $^{\circ}C)$, the PEO-water interaction is favorable and the chain can be extended, whereas at higher temperatures (above 24 $^{\circ}C)$, it is less favorable and the chain can be contracted by a hydrophobic hydration, i.e., the PEO-water interaction becomes to be unfavorable with the increase in temperature. As the urea is added to the system, the PEO chain can be more extended and huged by the perturbation of the structured water originating from the unfavorable PEO-water interaction. The effect of temperature on the intrinsic viscosity values shows an Arrhenius behavior. The activation energies of the viscous flow were obtained and discussed.

  • PDF

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes (Poly(ethylene oxide)와 Poly(ethylene-co-vinyl acetate)의 혼합막에 대한 기체분리 특성)

  • Lee, Hyun Kyung;Kang, Min Ji
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.

Enhanced thermomechanical properties of poly(ethylene oxide) and functionalized bacterial cellulose nanowhiskers composite nanofibers

  • Yun, Ok-Ja
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.376-376
    • /
    • 2016
  • Poly(ethylene oxide) (PEO)/functionalized bacterial cellulose nanowhiskers (f-BCNW) (0.1 wt%) composite nanofibers were fabricated by electrospinning process and the thermomechanical properties were significantly enhanced more than the PEO and PEO/bacterial cellulose nanowhiskers (BCNW) (0.1 wt%) composite nanofibers. The functionalization of BCNW (f-BCNW) was performed by microwave plasma treatment for effects of nitrogen functionalization of chemically-driven BCNW. The N-containing functional groups of f-BCNW enhanced chemical bonding between the hydroxyl groups of the polymer chains in the PEO matrix and diameter size of PEO/f-BCNW (0.1 wt%) composite nanofibers were decreased more than PEO and PEO/BCNW (0.1 wt%) composite nanofibers on the same concentration. The strong interfacial interactions between the f-BCNW nanofillers and polymer matrix were improved the thermomechanical properties such as crystallization temperature, weight loss and glass transition temperature (Tg) compared to PEO and PEO/BCNW composites nanofibers. The results demonstrated that N2 plasma treatment of BCNW is very useful in improving thermal stability for bio-applications.

  • PDF

Preparation and Characterization of Poly$({\gamma}-benzyl\;L-glutamate)$/Poly(ethylene oxide)-Lactoselactone Block Copolymers and Their Microspheres (Poly$({\gamma}-benzyl\;L-glutamate)$/Poly(ethylene oxide)-Lactoselactone 블록공중합체와 이들의 미립자 제조 및 특성)

  • Kim, Young-Hoon;Cho, Chong-Su;Sung, Young-Kiel;Chung, Byung-Ho;Lee, Kang-Choon
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.237-240
    • /
    • 1992
  • A series of biodegradable block copolymers consisting of $poly({\gamma}-benzyl\;L-glutamate)$ (PBLG) and poly(ethylene oxide) (PEO)-lactoselactone were prepared by polymerization of PEO-lactoselactone and ${\gamma}-benzyl$ L-glutamate-N-carboxyanhydride and characterized by IR and NMR. From circular dichroism measurements, it was found that the polymers exist in the ${\alpha}-helical$ conformation. Block copolymer microspheres were prepared by solvent-extraction-precipitation method for their primary evaluation for medical and biological applications.

  • PDF

Kinetics of Isothermal Crystallization in Poly(ethylene oxide) and Poly(styrene-co-acrylic acid)Blends (Poly(ethylene oxide)/Poly(styrene-co-acrylic acid) Blends의 등온 결정화 속도에 관한 연구)

  • Lee, Sang-Cheol;Lee, Mu-Seong;Jo, Won-Ho
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.151-155
    • /
    • 1991
  • The kinetics of isothermal crystallization in blends of poly(ethylene oxide) (PEO) and poly(styrene-co-acrylic acid) (SAA) has been examined as a function of the blend ratio, the copolymer composition, and the crystallization temperature, based on the Avrami eauation. The Avrami exponents were mostly chose to 2, independent of the crystallization temperature. The crystallization rate of PEO in PEO/SAA blends decreased with the increase of SAA content. And also, the higher the acrylic acid content in the SAA copolymer, 7he slower the crystallization rate of PEO in the blends.

  • PDF

Preparation and Characterization of Elastomeric Solid Electrolyte Based on $PEO-EDA-LiClO_4$ Blends ($PEO-EDA-LiClO_4$ 블렌드계 탄성체 전해질의 제조와 특성)

  • Chang, Young-Wook;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • Solid polymer electrolytes were prepared by UV irradiation of the blends consisting of poly(ethylene oxide)(PEO), epoxy diacrylate(EDA) and LiClO_4$. Conductivities of the electrolyte films were measured as a function or blend composition, salt concentration and temperature. The electrolyte having the composition of poly(ethylene oxide) (70% by weight)/epoxy diacrylate (30% by weight) with mole ratio of 10 of ethylene $oxide/Li^+$ exhibited a high ionic conductivity of $1.2{\times}10^{-5} S/cm$ at $25^{\circ}C$. This blend is transparent and shows elastomeric properties. Morphological studies by means of differential scanning calorimetry, X-ray diffraction and polarized optical microscopy indicated that the cured epoxy chains in the blends inhibit the crystallization of poly (ethylene oxide) and thereby induce the blend systems to be completely amorphous in certain compositions.

Biodegradability of $Poly({\gamma}-benzyl{\;}L-Glutamate)/Poly(Ethylene Oxide)/poly({\gamma}-benzyl{\;}L-Glutamate)$ Block Copolymer in Mice

  • Oh, In-joon;Oh, Jhin-Yee;Cho, Chong-Su;Lee, Kang-Choon
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.8-11
    • /
    • 1995
  • Biodegradability of poly $Poly({\gamma}-benzyl L-Glutamate)/poly(ethylene oxide)/Poly({\gamma}-benzyl L-Glutamate)$ block copolymer (GEG) having different content of poly(ethylene oxide) (PEO) were examined using magnetite as a tracer in mice. GEG microspheres containing magnetite were injected into mice through tail vein. Biodegradability and tissue distribution of microspheres were examined by analyzing the amount of magnetite in the microspheres recollected from mice organs after specific time interval. The results showed that GEG microsphere of high content of PEO was degraded more rapidly than those of low content of PEO in the mice organs.

  • PDF

Synthesis and Degradation Behaviors of PEO/PL/PEO tri-block Copolymers

  • Lee, Soo-Hong;Kim, Soo-Hyun;Kim, Young-Ha;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.85-90
    • /
    • 2002
  • Poly (ethylene oxide)/polylatide/poly(ethylene oxide) (PEO/PL/PEO) tri-block copolymers, which each block is connected by ester bond, were synthesized by coupling reaction of PL with PEO in the presence of pyridine. PL/PEO/PL tri-block copolymer was synthesized by ring opening polymerization of L-lactide initiated by PEO in the presence of stannous octoate. Degradation behavior of the copolymers was investigated in a pH 7.4 phosphate buffer saline (PBS) at 37$\pm$1 $^{\circ}C$. Gel permeation chromatography (GPC) and $^1$H-nuclear magnetic resonance (NMR) were used to monitor the change of mass loss, molecular weight and composition of copolymers. In hydrolytic degradation, the PEO/PL/PEO tri-block copolymer with high PEO contents affected the increase of its mass loss, and resulted in the decrease of its molecular weight as well as PEO composition. However, when PL/PEO/PL and PEO/PL/PEO tri-block copolymers had similar PEO contents, PEO/PL/PEO decreased faster in molecular weight and PEO composition than PL/PEO/PL.

Effect of High Intensity Ultrasonic Wave on the Degradation Characteristics of PEO (고강도 초음파에 의한 PEO의 분해특성에 관한 연구)

  • 김형수;김미화
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.353-359
    • /
    • 2002
  • High intensity ultrasound has been applied to a series of poly(ethylene oxide) (PEO)/water systems having different molecular weights of PEO. Major interest was focused on the effect of ultrasonic wane on the melt viscosity chemical structure and thermal properties of PEO. The expected role of ultrasound used in this study was to generate macroradicals of PEO chains by the formation and subsequent collapse of bubbles. It was found that the melt viscosity and chemical structure of PEO change significantly depending on the sonication time. For the prolonged sonication, PEO chains were significantly degraded and new end groups were formed by the interplay of various radical species. When the molecular weight of PEO was relatively higher, the crystallization rate was decreased and the intensity of the melting peak was reduced.